Physics of the Solid State

, Volume 47, Issue 7, pp 1358–1364 | Cite as

Elastic-stress relaxation in compacted nanocrystalline CuO

  • T. I. Arbuzova
  • S. V. Naumov
  • E. A. Kozlov
Low-Dimensional Systems and Surface Physics


The magnetic properties of two types of nanocrystalline antiferromagnetic CuO samples, namely, dense nanoceramics and loose powders, were studied. For nanomaterials with smaller particles, the magnetic susceptibility χ was shown to increase with a decrease in temperature T < TN. The increase in χ in both series of samples is related to the disordering of Cu2+ spins at the surfaces of nanoparticles. The magnetic properties of nanopowders characterize the properties of isolated nanoparticles. In a dense nanoceramic, the size effect is compensated for by the interaction between nanoparticles. The magnetic properties of nanoceramics are determined by elastic stresses induced by an external action. Elastic-stress relaxation results in the recovery of magnetic order and decreases the magnetic susceptibility.


Spectroscopy State Physics Magnetic Property Small Particle Magnetic Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59(9), 6321 (1999).CrossRefADSGoogle Scholar
  2. 2.
    A. Hernando, J. Phys.: Condens. Matter 11(48), 9455 (1999).CrossRefADSGoogle Scholar
  3. 3.
    A. I. Gusev, Nanocrystalline Materials: Methods of Production and Properties (URO Ross. Akad. Nauk, Yekaterinburg, 1998) [in Russian].Google Scholar
  4. 4.
    C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, J. Magn. Magn. Mater. 241, 430 (2002).CrossRefADSGoogle Scholar
  5. 5.
    J. B. Forsyth, P. J. Brown, and B. M. Wahklyn, J. Phys. C 21, 2917 (1988).ADSGoogle Scholar
  6. 6.
    T. I. Arbuzova, A. A. Samokhvalov, I. B. Smolyak, B. V. Karpenko, N. M. Chebotaev, and S. V. Naumov, J. Magn. Magn. Mater. 95, 168 (1991).CrossRefADSGoogle Scholar
  7. 7.
    E. Gmelin, Indian J. Pure Appl. Phys. 30, 596 (1992).Google Scholar
  8. 8.
    B. A. Gizhevskii, E. A. Kozlov, M. V. Degtyarev, L. M. Voronova, S. V. Naumov, and G. N. Tatarinova, Fiz. Khim. Obr. Mater. 3, 52 (1999).Google Scholar
  9. 9.
    T. I. Arbuzova, S. V. Naumov, A. A. Samokhvalov, B. A. Gizhevskii, V. A. Arbuzov, and K. V. Shal’nov, Fiz. Tverd. Tela (St. Petersburg) 43(5), 846 (2001) [Phys. Solid State 43 (5), 878 (2001)].Google Scholar
  10. 10.
    T. I. Arbuzova, S. V. Naumov, V. A. Arbuzov, K. V. Shal’nov, A. E. Ermakov, and A. A. Mysik, Fiz. Tverd. Tela (St. Petersburg) 45(2), 290 (2003) [Phys. Solid State 45 (2), 304 (2003)].Google Scholar
  11. 11.
    M. O. Keefe and F. S. Stone, J. Phys. Chem. Solids 23, 261 (1962).Google Scholar
  12. 12.
    R. Karling, Magnetochemistry (Mir, Moscow, 1989) [in Russian].Google Scholar
  13. 13.
    A. Punnoose, H. Magnone, and M. S. Seehra, Phys. Rev. B 64, 174420 (2001).Google Scholar
  14. 14.
    R. A. Borzi, S. J. Stewart, R. C. Mercader, G. Punte, and F. Garcia, J. Magn. Magn. Mater. 226–230, 1513 (2001).Google Scholar
  15. 15.
    M. Sohma, K. Kawaguchi, and Y. Fujii, J. Appl. Phys. 77(3), 1189 (1995).CrossRefADSGoogle Scholar
  16. 16.
    A. P. Druzhkov, B. A. Gizhevskii, V. L. Arbuzov, E. A. Kozlov, K. V. Shalnov, S. V. Naumov, and D. A. Perminov, J. Phys.: Cond. Matter 14, 7981 (2002).CrossRefADSGoogle Scholar
  17. 17.
    V. R. Palker, P. Ayyub, S. Chattopadhyay, and M. Multani, Phys. Rev. B 53, 2167 (1996).ADSGoogle Scholar
  18. 18.
    T. I. Arbuzova, I. B. Smolyak, A. A. Samokhvalov, and S. V. Naumov, Zh. Éksp. Teor. Fiz. 113(3), 1026 (1998) [JETP 86 (3), 559 (1998)].Google Scholar
  19. 19.
    G. J. Muench, S. Arais, and E. Matijevic, J. Appl. Phys. 52(3), 2493 (1981).CrossRefADSGoogle Scholar
  20. 20.
    J. T. Richardson, D. I. Yiagas, B. Turk, K. Forster, and M. V. Twigg, J. Appl. Phys. 70(11), 6977 (1991).CrossRefADSGoogle Scholar
  21. 21.
    M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1998).CrossRefADSGoogle Scholar
  22. 22.
    D. B. Bachurin and A. A. Nazarov, Fiz. Met. Metalloved. 97(2), 17 (2004).Google Scholar
  23. 23.
    V. N. Chuvil’deev, O. É. Pirozhnikova, and A. V. Petryaev, Fiz. Met. Metalloved. 92(6), 14 (2001).Google Scholar
  24. 24.
    J. Lofflet, J. Weismuller, and J. Gleiter, Nanostruct. Mater. 6(1–4), 105 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • T. I. Arbuzova
    • 1
  • S. V. Naumov
    • 1
  • E. A. Kozlov
    • 2
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Zababakhin All-Russia Research Institute of Applied PhysicsRussian Federal Nuclear CenterSnezhinsk, Chelyabinsk oblastRussia

Personalised recommendations