Physics of Atomic Nuclei

, Volume 68, Issue 7, pp 1227–1258

Quasilinearization method: Nonperturbative approach to physical problems

  • V. B. Mandelzweig
Elementary Particles and Fields Theory

Abstract

The general properties of the quasilinearization method (QLM), particularly its fast quadratic convergence, monotonicity, and numerical stability, are analyzed and illustrated on different physical problems. The method approaches the solution of a nonlinear differential equation by approximating the nonlinear terms by a sequence of linear ones and is not based on the existence of a small parameter. It is shown that QLM gives excellent results when applied to different nonlinear differential equations in physics, such as Blasius, Lane-Emden, and Thomas-Fermi equations, as well as in computation of ground and excited bound-state energies and wave functions in quantum mechanics (where it can be applied by casting the Schrödinger equation in the nonlinear Riccati form) for a variety of potentials most of which are not treatable with the help of perturbation theory. The convergence of the QLM expansion of both energies and wave functions for all states is very fast and the first few iterations already yield extremely precise results. The QLM approximations, unlike the asymptotic series in perturbation theory and 1/N expansions, are not divergent at higher orders. The method sums many orders of perturbation theory as well as of the WKB expansion. It provides final and accurate answers for large and infinite values of the coupling constants and is able to handle even supersingular potentials for which each term of the perturbation series is infinite and the perturbation expansion does not exist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Simonov, Yad. Fiz. 3, 630 (1966) [Sov. J. Nucl. Phys. 3, 461 (1966)]; Yu. A. Simonov and A. M. Badalyan, Yad. Fiz. 3, 1032 (1966) [Sov. J. Nucl. Phys. 3, 755 (1966)]; 5, 88 (1967) [5, 60 (1967)]; V. V. Pustovalov and Yu. A. Simonov, Zh. Éksp. Teor. Fiz. 51, 345 (1966) [Sov. Phys. JETP 24, 230 (1967)]; F. Calogero and Yu. A. Simonov, Phys. Rev. 169, 789 (1968), 183, 869 (1969); Nuovo Cimento A 64, 337 (1969).MathSciNetGoogle Scholar
  2. 2.
    V. B. Mandelzweig, Nucl. Phys. A 508, 63c (1990); Few-Body Syst., Suppl. 7, 371 (1994).ADSGoogle Scholar
  3. 3.
    M. I. Haftel and V. B. Mandelzweig, Phys. Lett. A 120, 232 (1987); Ann. Phys. (N.Y.) 189, 29 (1989); Phys. Rev. A 38, 5995 (1988); 39, 2813 (1989); 41, 2339 (1990); 46, 142 (1992); 49, 3338, 3344 (1994).CrossRefADSGoogle Scholar
  4. 4.
    R. Krivec, M. I. Haftel, and V. B. Mandelzweig, Phys. Rev. A 46, 6903 (1992); 47, 911 (1993); 52, 221 (1995); Few-Body Syst. 17, 229 (1994); J. Comput. Phys. 123, 149 (1996); S. Berkovic, R. Krivec, V. Mandelzweig, and L. Stotland, Phys. Rev. A 55, 988 (1997).CrossRefADSGoogle Scholar
  5. 5.
    R. Krivec and V. B. Mandelzweig, Phys. Rev. A 52, 221 (1995); 56, 3614 (1997); 57, 4976 (1998); R. Krivec, V. Mandelzweig, and K. Varga, Phys. Rev. A 61, 062503 (2000).CrossRefADSGoogle Scholar
  6. 6.
    R. Krivec, M. Amusia, and V. Mandelzweig, Phys. Rev. A 62, 064701 (2000); 63, 052708 (2001); 64, 012713 (2001); 67, 062720 (2003); Surf. Rev. Lett. 9, 1161 (2002); Few-Body Syst., Suppl. 14, 147 (2003); M. Ya. Amusia, E. G. Drukarev, R. Krivec, and V. B. Mandelzweig, Phys. Rev. 66, 052706 (2002); AIP Proc. 652, 123 (2003).Google Scholar
  7. 7.
    A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A 551, 241 (1993); 577, 511 (1994); Few-Body Syst. 18, 25 (1995); Phys. Rev. C 52, R15 (1995); Phys. Rev. Lett. 81, 1580 (1998); 82, 3759 (1999).ADSGoogle Scholar
  8. 8.
    A. M. Badalyan and Yu. A. Simonov, Yad. Fiz. 11, 1112 (1970) [Sov. J. Nucl. Phys. 11, 618 (1970)].MathSciNetGoogle Scholar
  9. 9.
    V. B. Mandelzweig, Nucl. Phys. A 292, 333 (1977).ADSMathSciNetGoogle Scholar
  10. 10.
    R. Kalaba, J. Math. Mech. 8, 519 (1959).MATHMathSciNetGoogle Scholar
  11. 11.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems (Elsevier, New York, 1965; Mir, Moscow, 1968).Google Scholar
  12. 12.
    V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, in Mathematics and its Applications (Kluwer, Dordrecht, 1998), Vol. 440.Google Scholar
  13. 13.
    F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1965; Mir, Moscow, 1972).Google Scholar
  14. 14.
    V. V. Babikov, The Method of Phase Functions in Quantum Mechanics (Nauka, Moscow, 1968) [in Russian].Google Scholar
  15. 15.
    A. A. Adrianov, M. I. Ioffe, and F. Cannata, Mod. Phys. Lett. A 11, 1417 (1996).ADSGoogle Scholar
  16. 16.
    K. Raghunathan and R. Vasudevan, J. Phys. 20, 839 (1987).MathSciNetGoogle Scholar
  17. 17.
    M. Jameel, J. Phys. 21, 1719 (1988).MATHMathSciNetGoogle Scholar
  18. 18.
    M. A. Hooshyar and M. Razavy, Nuovo Cimento B 75, 65 (1983).Google Scholar
  19. 19.
    V. B. Mandelzweig, J. Math. Phys. 40, 6266 (1999).CrossRefADSMATHMathSciNetGoogle Scholar
  20. 20.
    V. B. Mandelzweig and F. Tabakin, Comput. Phys. Commun. 141, 268 (2001).ADSMathSciNetGoogle Scholar
  21. 21.
    R. Krivec and V. B. Mandelzweig, Comput. Phys. Commun. 152, 165 (2003).ADSMathSciNetGoogle Scholar
  22. 22.
    R. Courant and D. Hilbert, Methoden dermathematischen physik (Springer, Berlin, 1937; Gostekhizdat, Moscow, 1945), Vols. 1, 2.Google Scholar
  23. 23.
    S. Fluegge, Practical Quantum Mechanics (Springer, New York, 1974), Vols. 1, 2.Google Scholar
  24. 24.
    V. Volterra, Theory of Functionals (Blackie, London, 1931; Nauka, Moscow, 1983).Google Scholar
  25. 25.
    R. F. Dashen, Nuovo Cimento 28, 229 (1963); J. Math. Phys. 4, 388 (1963).MathSciNetGoogle Scholar
  26. 26.
    V. V. Babikov, Usp. Fiz. Nauk 92, 3 (1967) [Sov. Phys. Usp. 10, 271 (1967)].Google Scholar
  27. 27.
    E. Picard, J. Math. 6, 145 (1990).Google Scholar
  28. 28.
    H. Goenner and P. Havas, J. Math. Phys 41, 7029 (2000).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    L. H. Thomas, Proc. Cambrige Phil. 23, 542 (1927).MATHGoogle Scholar
  30. 30.
    E. Fermi, Z. Phys. 48, 73 (1928).MATHGoogle Scholar
  31. 31.
    H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics (W. A. Benjamin Inc., New York, 1968; Mir, Moscow, 1965).Google Scholar
  32. 32.
    H. Schlichting, Boundary Layer Theory (McGrow-Hill, New York, 1978; Nauka, Moscow, 1974).Google Scholar
  33. 33.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic Press, New York, 1994).Google Scholar
  34. 34.
    B. W. Char et al., Maple V Library Reference Manual and Computer Program (Springer, New York, 1991).Google Scholar
  35. 35.
    L. D. Landauand E. M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1989; Pergamon Press, New York, 1977).Google Scholar
  36. 36.
    R. Krivec and V. B. Mandelzweig, Comput. Phys. Commun. 138, 69 (2001).ADSGoogle Scholar
  37. 37.
    R. G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982; Mir, Moscow, 1969).Google Scholar
  38. 38.
    S. D. Conte and C. de Boor, Elementary Numerical Analysis (McGrow-Hill, New York, 1981).Google Scholar
  39. 39.
    A. Ralson and P. Rabinowitz, A First Course in Numerical Analysis (McGrow-Hill, New York, 1988).Google Scholar
  40. 40.
    R. Krivec and V. B. Mandelzweig, Phys. Lett. A 337, 354 (2005).CrossRefADSGoogle Scholar
  41. 41.
    V. B. Mandelzweig, Comparison of Quasilinear and WKB Solutions in Quantum Mechanics (submitted for publication).Google Scholar
  42. 42.
    E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956; ONTI, Kharkov, 1939).Google Scholar
  43. 43.
    S. Wolfram, The Mathematica Book, 4th ed. (Wolfram Media/Cambrige Univ. Press, 1999).Google Scholar
  44. 44.
    J. L. Dunham, Phys. Rev. 41, 713 (1932); C. M. Bender, K. Olaussen, and P. Wang, Phys. Rev. D 16, 1740 (1977).ADSMATHGoogle Scholar
  45. 45.
    R. A. Leacock and M. J. Padgett, Phys. Rev. Lett. 50, 3 (1983).CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    R. A. Leacock and M. J. Padgett, Phys. Rev. D 28, 2491 (1983).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    I. I. Goldman and V. D. Krivchenkov, Problems in Quantum Mechanics (Dover, New York, 1993).Google Scholar
  48. 48.
    R. Krivec, V. B. Mandelzweig, and F. Tabakin, Few-Body Syst. 34, 57 (2004).ADSGoogle Scholar
  49. 49.
    R. Krivec and V. B. Mandelzweig, Quazilinearization Method and WKB, Comput. Phys. Commun. (2005) (in press).Google Scholar
  50. 50.
    R. E. Langer, Phys. Rev. 51, 669 (1937); C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I (Springer, New York, 1999).ADSMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. B. Mandelzweig
    • 1
  1. 1.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael

Personalised recommendations