Optics and Spectroscopy

, Volume 98, Issue 6, pp 913–918

Static holographic phase conjugation of vortex beams

  • P. V. Polyanskii
  • K. V. Fel’de
Physical and Quantum Optics

Abstract

Phase conjugation of singular (vortex) beams is performed using a static nonlinearly recorded hologram. The diagnostics of phase-conjugate optical vortices is carried out by an original method based on the Young model of diffraction phenomena. It is shown that a phase-conjugate vortex is characterized by the same topological charge as a vortex inverted by degenerate four wave mixing, differing in sign from a vortex reflected by an ordinary mirror.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Ed. by E. Wolf (Elsevier, Amsterdam, 2001), Vol. 42, pp. 219–276.Google Scholar
  2. 2.
    P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).Google Scholar
  3. 3.
    I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, Proc. SPIE 3487, 39 (1998).ADSGoogle Scholar
  4. 4.
    I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, Asian J. Phys. 7, 495 (1998).Google Scholar
  5. 5.
    V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, JETP Lett. 52, 429 (1990).ADSGoogle Scholar
  6. 6.
    N. R. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, et al., Sov. Phys. JETP 56, 983 (1982).Google Scholar
  7. 7.
    G. V. Bogatyryova and M. S. Soskin, Semicond. Phys. Quantum Electron. Optoelectron. 6, 254 (2003).Google Scholar
  8. 8.
    P. V. Polyanskii, Opt. Spectrosc. 83, 324 (1997).ADSGoogle Scholar
  9. 9.
    P. V. Polyanskii, Opt. Spectrosc. 84, 300 (1998).ADSGoogle Scholar
  10. 10.
    P. V. Polyanskii, Opt. Spectrosc. 86, 288 (1999).ADSGoogle Scholar
  11. 11.
    P. V. Polyanskii and G. V. Bogatyryova, Opt. Appl. 29, 583 (1999).Google Scholar
  12. 12.
    H. J. Caulfield, in Proceedings of International Conference: From Galileo’s “Occialino” to Optoelectronics (World Sci., New York, 1993), pp. 34–49.Google Scholar
  13. 13.
    J. Upatnieks and C. Leonard, J. Opt. Soc. Am. 60, 297 (1970).Google Scholar
  14. 14.
    Th. Young, Philos. Trans. R. Soc. London 20, 26 (1802).Google Scholar
  15. 15.
    A. Sommerfeld, Vorlesungen über Theoretische Physik, Vol. 4: Optik (Dieterich, Wiesbaden, 1950; Inostrannaya Literatura, Moscow, 1953; Academic, New York, 1954).Google Scholar
  16. 16.
    K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52, 615 (1962).MathSciNetGoogle Scholar
  17. 17.
    P. V. Polyanskii, Proc. SPIE 5477, 31 (2003).ADSGoogle Scholar
  18. 18.
    Ch. V. Felde, Proc. SPIE 5477, 67 (2003).ADSGoogle Scholar
  19. 19.
    G. V. Bogatyryova, Ch. V. Felde, and P. V. Polyanskii, Opt. Appl. 33, 695 (2003).Google Scholar
  20. 20.
    G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, et al., Opt. Lett. 28, 878 (2003).ADSGoogle Scholar
  21. 21.
    Ch. V. Felde, Ukr. J. Phys. 49, 473 (2004).Google Scholar
  22. 22.
    O. O. Arkhelyuk, P. V. Polyanskii, A. A. Ivanovskii, and M. S. Soskin, Opt. Appl. 34, 833 (2004).Google Scholar
  23. 23.
    G. V. Bogatyreva, K. V. Fel’de, P. V. Polyanskii, and M. S. Soskin, Opt. Spektrosk. 97, 845 (2004) [Opt. Spectrosc. 97, 782 (2004)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • P. V. Polyanskii
    • 1
  • K. V. Fel’de
    • 1
  1. 1.Chernovtsy National UniversityChernovtsyUkraine

Personalised recommendations