Advertisement

Technical Physics

, Volume 50, Issue 6, pp 680–684 | Cite as

Tunnel magnetoresistance oscillations in a ferromagnet-insulator-ferromagnet system

  • S. A. Ignatenko
  • A. L. Danilyuk
  • V. E. Borisenko
Theoretical and Mathematical Physics

Abstract

A model of spin-dependent transport of electrons through a ferromagnet-insulator-ferromagnet structure is developed. It takes into account the image forces, tunnel barrier parameters, and effective masses of an electron tunneling in the barrier and in the ferromagnetic electrode in the free electron approximation. Calculations for an iron-aluminum oxide-iron structure show that, with an increase in the bias voltage, the tunnel magnetoresistance decreases monotonically and then breaks into damped oscillations caused by the interference of the electrons’ wave functions in the conduction region of the potential barrier. The image forces increase the tunnel magnetoresistance by two or three times.

Keywords

Wave Function Potential Barrier Bias Voltage Effective Mass Free Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Moodera, T. H. Kim, C. Tanaka, et al., Philos. Mag. B 80, 195 (2000).Google Scholar
  2. 2.
    G. A. Prinz, Science 282, 1660 (1998).CrossRefGoogle Scholar
  3. 3.
    M. Julliere, Phys. Lett. A 54A, 225 (1975).ADSGoogle Scholar
  4. 4.
    J. M. MacLaren, X. G. Zhang, and W. H. Butler, Phys. Rev. B 56, 11827 (1997).Google Scholar
  5. 5.
    J. C. Slonchewsi, Phys. Rev. B 39, 6995 (1989).ADSGoogle Scholar
  6. 6.
    J. Zhang and R. M. White, J. Appl. Phys. 83, 6512 (1998).ADSGoogle Scholar
  7. 7.
    X. Zhang, B.-Z. Li, G. Sun, et al., Phys. Rev. B 56, 5484 (1997).ADSGoogle Scholar
  8. 8.
    T. Miyazaki, N. Tezuka, S. Kumagai, et al., J. Phys. D 31, 630 (1998); M. Sharma, S. X. Wang, and J. H. Nickel, Phys. Rev. Lett. 82, 616 (1999).CrossRefADSGoogle Scholar
  9. 9.
    P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, et al., Appl. Phys. Lett. 76, 3783 (2000).CrossRefADSGoogle Scholar
  10. 10.
    S. S. Liu and G. Y. Guo, J. Magn. Magn. Mater. 209, 135 (2000).ADSGoogle Scholar
  11. 11.
    J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).Google Scholar
  12. 12.
    D. Ferry and S. Goodnick, Transport in Nanostructures (Cambridge Univ. Press., Cambridge, 1997).Google Scholar
  13. 13.
    A. H. Davis and J. M. MacLaren, J. Appl. Phys. 87, 5224 (2000).CrossRefADSGoogle Scholar
  14. 14.
    W. H. Butler, X.-G. Zhang, T. C. Schulthess, et al., J. Appl. Phys. 85, 5834 (1999).ADSGoogle Scholar
  15. 15.
    M. B. Stearns, J. Magn. Magn. Mater. 5, 167 (1977).ADSGoogle Scholar
  16. 16.
    F. Montaigne, M. Hehn, and A. Schuhl, Phys. Rev. B 64, 144402 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • S. A. Ignatenko
    • 1
  • A. L. Danilyuk
    • 1
  • V. E. Borisenko
    • 1
  1. 1.Belarussian State University of Informatics and Radio ElectronicsMinskBelarus

Personalised recommendations