Advertisement

Nonradiative transition to the ground state and superelastic scattering of exited atoms upon impact on the surface of wide-bandgap dielectrics

  • A. M. Bonch-Bruevich
  • T. A. Vartanyan
  • S. G. Przhibel’skii
  • V. N. Smirnov
  • V. V. Khromov
Electronic Properties of Solids

Abstract

The impact of excited cesium atoms on sapphire and glass surfaces have been experimentally studied. It is established that the probability of electron excitation quenching upon impact of an atom on the dielectric surface is close to unity. The velocity distribution of unexcited atoms upon scattering from the surface has been determined using the time-of-flight technique. The kinetic energies of most of these atoms are several tens of times greater than the energy of thermal motion of the excited atoms impinging on the surface. Conversion of the internal energy of atoms into their kinetic energy is explained in terms of nonradiative electron transitions with simultaneous excitation of lattice vibrations in the dielectric crystal. This mechanism of atomic excitation quenching near the dielectric surface explains the significant difference between the energies of atoms upon superelastic scattering and upon photodesorption from an adsorbed state.

Keywords

Kinetic Energy Sapphire Cesium Internal Energy Glass Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Nikitin, Theory of Elementary Atomic-Molecular Reactions (Khimiya, Moscow, 1971), Part 1 [in Russian].Google Scholar
  2. 2.
    B. M. Smirnov, Excited Atoms (Énergoizdat, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    P. Boschwina, W. Meyer, I. V. Hertel, and W. Reiland, J. Chem. Phys. 75, 5438 (1981).ADSGoogle Scholar
  4. 4.
    I. A. Silver, N. C. Blais, and E. H. Kwei, J. Chem. Phys. 71, 3412 (1979).CrossRefADSGoogle Scholar
  5. 5.
    I. V. Hertel and W. Reiland, J. Chem. Phys. 74, 6757 (1981).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Bonch-Bruevich, T. A. Vartanyan, A. V. Gorlanov, et al., Zh. Éksp. Teor. Fiz. 97, 1077 (1990) [Sov. Phys. JETP 70, 604 (1990)].Google Scholar
  7. 7.
    A. M. Bonch-Bruevich, T. A. Vartanyan, Yu. N. Maksimov, et al., Zh. Éksp. Teor. Fiz. 112, 362 (1997) [JETP 85, 200 (1997)].Google Scholar
  8. 8.
    É. S. Medvedev and V. I. Osherov, Theory of Nonradiative Transitions in Polyatomic Molecules (Nauka, Moscow, 1983) [in Russian].Google Scholar
  9. 9.
    A. M. Bonch-Bruevich, T. A. Vartanyan, S. G. Przhibel’skii, and V. V. Khromov, Opt. Spektrosk. 95, 830 (2003) [Opt. Spectrosc. 95, 777 (2003)].Google Scholar
  10. 10.
    A. M. Bonch-Bruevich, T. A. Vartanyan, S. G. Przhibel’skii, et al., Opt. Spektrosk. 95, 885 (2003) [Opt. Spectrosc. 95, 827 (2003)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. M. Bonch-Bruevich
    • 1
  • T. A. Vartanyan
    • 1
  • S. G. Przhibel’skii
    • 1
  • V. N. Smirnov
    • 1
  • V. V. Khromov
    • 1
  1. 1.Vavilov Optical InstituteState Scientific Center of the Russian FederationSt. PetersburgRussia

Personalised recommendations