Variable-range cotunneling and conductivity of a granular metal

  • M. V. Feigel’man
  • A. S. Ioselevich
Condensed Matter

Abstract

The Efros-Shklovskii (E-S) law for the conductivity of granular metals is interpreted as a result of a variable-range cotunneling process. The cotunneling between distant resonant grains is predominantly elastic at low TTc, while it is inelastic (i.e., accompanied by creation of electron-hole pairs on a string of intermediate non-resonant grains) at TTc. The corresponding E-S temperature TES, in the latter case, is slightly (logarithmically) T dependent. The magnetoresistance in the two cases is different: it may be relatively strong and negative at TTc , while, at T > Tc, it is suppressed due to inelastic processes, which destroy the interference.

PACS numbers

73.23.Hk 73.43.Qt 73.63.−b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Chui et al., Phys. Rev. B 23, 6172 (1981).ADSMathSciNetGoogle Scholar
  2. 2.
    R. W. Simon et al., Phys. Rev. B 36, 1962 (1987).CrossRefADSGoogle Scholar
  3. 3.
    A. Gerber, A. Milner, G. Deutscher, et al., Phys. Rev. Lett. 78, 4277 (1997).CrossRefADSGoogle Scholar
  4. 4.
    A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).CrossRefADSGoogle Scholar
  5. 5.
    B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).Google Scholar
  6. 6.
    J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).Google Scholar
  7. 7.
    D. A. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).CrossRefADSGoogle Scholar
  8. 8.
    K. B. Efetov and A. Tschersich, Europhys. Lett. 59, 114 (2002); Phys. Rev. B 67, 174205 (2003).CrossRefADSGoogle Scholar
  9. 9.
    M. V. Feigel’man, A. S. Ioselevich, and M. A. Skvortsov, Phys. Rev. Lett. 93, 136403 (2004).Google Scholar
  10. 10.
    V. L. Nguen, B. Z. Spivak, and B. I. Shklovskii, JETP Lett. 41, 42 (1985).ADSGoogle Scholar
  11. 11.
    U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).CrossRefADSGoogle Scholar
  12. 12.
    H. L. Zhao, B. Z. Spivak, M. P. Celfand, and S. Feng, Phys. Rev. B 44, 10760 (1991).Google Scholar
  13. 13.
    B. I. Shklovskii and B. Z. Spivak, in Hopping Transport in Solids, Ed. by M. Pollak and B. Shklovskii (Elsevier, Amsterdam, 1991), p. 271.Google Scholar
  14. 14.
    L. I. Glazman and M. Pustilnik, cond-mat/0501007.Google Scholar
  15. 15.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).Google Scholar
  16. 16.
    V. Ambegokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4, 2612 (1971).ADSGoogle Scholar
  17. 17.
    T. Hwa and D. S. Fisher, Phys. Rev. B 49, 3136 (1994), and references therein.CrossRefADSGoogle Scholar
  18. 18.
    I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and V. I. Kozub, cond-mat/0501094.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • M. V. Feigel’man
    • 1
  • A. S. Ioselevich
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations