Advertisement

Optics and Spectroscopy

, Volume 98, Issue 5, pp 681–686 | Cite as

Intersystem crossing mechanisms and single molecule fluorescence: Terrylene in anthracene crystals

  • M. A. Kol’chenko
  • B. Kozankiewicz
  • A. Nicolet
  • M. Orrit
Article

Abstract

Single molecule spectroscopy requires molecules with low triplet yields and/or short triplet lifetimes. The intersystem crossing (ISC) rate may be dramatically enhanced by the host matrix. Comparing the fluorescence intensity of single terrylene molecules in para-terphenyl, naphthalene, and anthracene crystals, we found a reduction of the saturation intensity by three orders of magnitude in the latter case. The fluorescence autocorrelation function indicates that the bottleneck state is the terrylene triplet. We propose a ping-pong mechanism between host and guest. This intermolecular ISC mechanism, which can open whenever the host triplet lies lower than the guest singlet, was overlooked in previous single molecule investigations.

Keywords

Naphthalene Single Molecule Molecule Investigation Host Matrix Molecule Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Moerner and L. Kador, Phys. Rev. Lett. 62, 2535 (1989).CrossRefADSGoogle Scholar
  2. 2.
    M. Orrit and J. Bernard, Phys. Rev. Lett. 65, 2716 (1990).CrossRefADSGoogle Scholar
  3. 3.
    Single Molecule Optical Detection, Imaging and Spectroscopy, Ed. by T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild (VSH, Weinheim, Germany, 1997).Google Scholar
  4. 4.
    S. Kummer, T. Basché, and C. Bräuchle, Chem. Phys. Lett. 229, 309 (1994); Chem. Phys. Lett. 232, 414 (1995).CrossRefADSGoogle Scholar
  5. 5.
    P. J. Walla, F. Jelezko, Ph. Tamarat, et al., Chem. Phys. 233, 117 (1998).CrossRefGoogle Scholar
  6. 6.
    E. A. Donley, V. Burzomato, U. P. Wild, and T. Plakhotnik, J. Lumin. 83–84, 255 (1999).Google Scholar
  7. 7.
    R. I. Personov, in Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, Ed. by V. M. Agranovich and R. M. Hochstrasser (North-Holland, Amsterdam, 1983; Nauka, Moscow, 1987), Chap. 10.Google Scholar
  8. 8.
    J. O. Williams, A. C. Jones, and M. J. Davies, J. Chem. Soc., Faraday Trans. 2 79, 263 (1983).CrossRefGoogle Scholar
  9. 9.
    A. Corval, C. Kryschi, S. Astilean, and H. P. Trommsdorff, J. Phys. Chem. 98, 7376 (1994).CrossRefGoogle Scholar
  10. 10.
    N. Hirota, J. Chem. Phys. 44, 2199 (1966).CrossRefGoogle Scholar
  11. 11.
    H. Zimmermann, D. Stehlik, and K. H. Hausser, Chem. Phys. Lett. 11, 496 (1971).CrossRefADSGoogle Scholar
  12. 12.
    J. Bernard, L. Fleury, H. Talon, and M. Orrit, J. Chem. Phys. 98, 850 (1993).CrossRefADSGoogle Scholar
  13. 13.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice Hall, Englewood Cliffs, N.J., 1969; Mir, Moscow, 1972).Google Scholar
  14. 14.
    V. Lawetz, G. Orlandi, and W. Siebrand, J. Chem. Phys. 56, 4058 (1972).CrossRefGoogle Scholar
  15. 15.
    A. C. J. Brouwer, E. J. J. Groenen, and J. Schmidt, Phys. Rev. Lett. 80, 3944 (1998).CrossRefADSGoogle Scholar
  16. 16.
    G. C. Smith, Phys. Rev. 166, 839 (1968).ADSGoogle Scholar
  17. 17.
    R. E. Kellogg, J. Chem. Phys. 44, 411 (1966).CrossRefGoogle Scholar
  18. 18.
    D. S. McClure, J. Chem. Phys. 19, 670 (1951).CrossRefGoogle Scholar
  19. 19.
    A. M. van Oijen, J. Köhler, J. Schmidt, et al., J. Opt. Soc. Am. A 16, 909 (1999).ADSGoogle Scholar
  20. 20.
    R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, J. Phys. Chem. A 108, 1657 (2004).CrossRefGoogle Scholar
  21. 21.
    G. S. Harms, T. Irngartinger, D. Reiss, et al., Chem. Phys. Lett. 313, 533 (1999).CrossRefGoogle Scholar
  22. 22.
    B. Kozankiewicz, M. Banasiewicz, J. Dresner, and M. Orrit, Chem. Phys. Lett. 343, 71 (2001).CrossRefGoogle Scholar
  23. 23.
    W. P. Ambrose, T. Basché, and W. E. Moerner, J. Chem. Phys. 95, 7150 (1991).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • M. A. Kol’chenko
    • 1
  • B. Kozankiewicz
    • 1
    • 2
  • A. Nicolet
    • 1
  • M. Orrit
    • 1
  1. 1.Molecular Nano-Optics and Spins (MoNOS), Leiden Institute of Physics (LION), Huygens LaboratoryLeiden UniversityLeidenThe Netherlands
  2. 2.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations