Journal of Experimental and Theoretical Physics

, Volume 100, Issue 4, pp 722–730

Hopping conductivity and Coulomb correlations in 2D arrays of Ge/Si quantum dots

  • A. I. Yakimov
  • A. V. Dvurechenskii
  • G. M. Min’kov
  • A. A. Sherstobitov
  • A. I. Nikiforov
  • A. A. Bloshkin
Electronic Properties of Solids

Abstract

The temperature and magnetic-field dependences of the conductivity associated with hopping transport of holes over a 2D array of Ge/Si(001) quantum dots with various filling factors are studied experimentally. A transition from the Éfros-Shklovskiĭ law for the temperature dependence of hopping conductivity to the Arrhenius law with an activation energy equal to 1.0–1.2 meV is observed upon a decrease in temperature. The activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation in fields exceeding 4 T. It is found that the magnetoresistance in layers of quantum dots is essentially anisotropic: the conductivity decreases in an increasing magnetic field oriented perpendicularly to a quantum dot layer and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magnetoresistance for transverse and longitudinal field orientations differ by two orders of magnitude. The experimental results are interpreted using the model of many-particle correlations of holes localized in quantum dots, which lead to the formation of electron polarons in a 2D disordered system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).Google Scholar
  2. 2.
    S. D. Baranovskii, B. I. Shklovskii, and A. L. Éfros, Zh. Éksp. Teor. Fiz. 78, 395 (1980) [Sov. Phys. JETP 51, 199 (1980)].Google Scholar
  3. 3.
    R. Chicon, M. Ortuño, and M. Pollak, Phys. Rev. B 37, 10520 (1988).Google Scholar
  4. 4.
    A. V. Dvurechenskii, A. V. Nenashev, and A. I. Yakimov, Nanotechnology 13, 75 (2002).CrossRefADSGoogle Scholar
  5. 5.
    A. V. Nenashev, A. V. Dvurechenskii, and A. F. Zinovieva, Phys. Rev. B 67, 205301 (2003).Google Scholar
  6. 6.
    D. N. Tsigankov and A. L. Efros, Phys. Rev. Lett. 88, 176602 (2002).Google Scholar
  7. 7.
    V. L. Nguen, B. Z. Spivak, and B. I. Shklovskii, Zh. Éksp. Teor. Fiz. 89, 1770 (1985) [Sov. Phys. JETP 62, 1021 (1985)].ADSGoogle Scholar
  8. 8.
    W. Schirmacher, Phys. Rev. B 41, 2461 (1990).CrossRefADSGoogle Scholar
  9. 9.
    V. L. Nguen, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 335 (1984) [Sov. Phys. Semicond. 18, 207 (1984)].Google Scholar
  10. 10.
    B. I. Shklovskii, Pis’ma Zh. Éksp. Teor. Fiz. 36, 43 (1982) [JETP Lett. 36, 51 (1982)].Google Scholar
  11. 11.
    V. I. Kozub, S. D. Baranovskii, and I. Shlimak, Solid State Commun. 113, 587 (2000).CrossRefGoogle Scholar
  12. 12.
    Qiu-yi, B. I. Shklovskii, A. Zrenner, et al., Phys. Rev. B 41, 8477 (1990).ADSGoogle Scholar
  13. 13.
    A. N. Aleshin, A. N. Ionov, R. V. Parfen’ev, et al., Fiz. Tverd. Tela (Leningrad) 30, 696 (1988) [Sov. Phys. Solid State 30, 398 (1988)].Google Scholar
  14. 14.
    P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. Lett. 69, 1804 (1992).ADSGoogle Scholar
  15. 15.
    A. I. Yakimov, T. Wright, C. J. Adkins, and A. V. Dvurechenskii, Phys. Rev. B 51, 16549 (1995).Google Scholar
  16. 16.
    M. E. Raikh, Solid State Commun. 75, 935 (1990).CrossRefGoogle Scholar
  17. 17.
    M. E. Raikh, J. Czingon, Qiu-yi Ye, et al., Phys. Rev. B 45, 6015 (1992).CrossRefADSGoogle Scholar
  18. 18.
    A. G. Zabrodskii and K. N. Zinov’eva, Zh. Éksp. Teor. Fiz. 86, 727 (1984) [Sov. Phys. JETP 59, 425 (1984)].Google Scholar
  19. 19.
    A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and A. A. Bloshkin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 445 (2003) [JETP Lett. 77, 376 (2003)].Google Scholar
  20. 20.
    A. I. Yakimov, A. V. Dvurechenskii, A. V. Nenashev, and A. I. Nikiforov, Phys. Rev. B 68, 205310 (2003).Google Scholar
  21. 21.
    Yu. V. Dubrovskii, V. A. Volkov, L. Eaves, et al., in Proceedings of 12th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 2004), p. 342.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. I. Yakimov
    • 1
  • A. V. Dvurechenskii
    • 1
  • G. M. Min’kov
    • 2
  • A. A. Sherstobitov
    • 2
  • A. I. Nikiforov
    • 1
  • A. A. Bloshkin
    • 1
  1. 1.Institute of Semiconductor Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Ural State UniversityYekaterinburgRussia

Personalised recommendations