Optical-acoustic soliton under the conditions of slow light and stimulated Mandelstam-Brillouin scattering

  • S. V. Sazonov
Atoms, Spectra, Radiations


The possibility of forming a stable optical-acoustic soliton in the regime of electromagnetically induced transparency has been analyzed under the condition that the group velocity of light in a medium with stimulated Mandelstam-Brillouin scattering decreases to the speed of sound. This possibility exists because the forward Mandelstam-Brillouin scattering, which is forbidden in a nondispersive medium, is allowed under this condition. The optical component is an envelope pulse, and the acoustic component has no carrier frequency. It has been shown that such a soliton can be formed for anomalously low input intensities of the optical pulse.

PACS numbers

42.50.Ar 42.65.Es 42.81.−i 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Hau, S. E. Harris, Z. Dutton, and C. Behroozi, Nature 397, 594 (1999).CrossRefADSGoogle Scholar
  2. 2.
    A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, et al., Phys. Rev. Lett. 88, 023602 (2002).Google Scholar
  3. 3.
    A. B. Matsko, Yu. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, Phys. Rev. Lett. 84, 5752 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. B. Matsko, Yu. V. Rostovtsev, M. Fleishhauer, and M. O. Scully, Phys. Rev. Lett. 86, 2006 (2001).CrossRefADSGoogle Scholar
  5. 5.
    A. V. Gulakov and S. V. Sazonov, Pis’ma Zh. Éksp. Teor. Fiz. 79, 746 (2004) [JETP Lett. 79, 610 (2004)].Google Scholar
  6. 6.
    A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 126, 155 (2004) [JETP 99, 133 (2004)].Google Scholar
  7. 7.
    S. V. Sazonov, Pis’ma Zh. Éksp. Teor. Fiz. 76, 176 (2002) [JETP Lett. 76, 143 (2002)].Google Scholar
  8. 8.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  9. 9.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].Google Scholar
  10. 10.
    S. E. Harris, Phys. Today, No. 7, 36 (1997).Google Scholar
  11. 11.
    S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).CrossRefADSGoogle Scholar
  12. 12.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35, 908 (1972)].Google Scholar
  13. 13.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1984; Mir, Moscow, 1988).Google Scholar
  14. 14.
    N. Yadjima and M. Oikawa, Prog. Theor. Phys. 56, 1719 (1976).ADSGoogle Scholar
  15. 15.
    S. K. Zhdanov and B. A. Trubnikov, Zh. Éksp. Teor. Fiz. 92, 1612 (1987) [Sov. Phys. JETP 65, 904 (1987)].ADSGoogle Scholar
  16. 16.
    S. V. Sazonov, Zh. Éksp. Teor. Fiz. 125, 1409 (2004) [JETP 98, 1237 (2004)].Google Scholar
  17. 17.
    H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).ADSGoogle Scholar
  18. 18.
    M. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • S. V. Sazonov
    • 1
  1. 1.Kaliningrad State UniversityKaliningradRussia

Personalised recommendations