Optics and Spectroscopy

, Volume 98, Issue 4, pp 618–623 | Cite as

Collinear diffraction of a divergent light beam by ultrasound in a paratellurite crystal

  • Yu. S. Dobrolenskiy
  • V. B. Voloshinov
  • V. N. Parygin
Physical and Quantum Optics

Abstract

The collinear acousto-optical interaction of a divergent light beam with ultrasound along the approximate [110] direction in a TeO2 paratellurite crystal is investigated theoretically and experimentally. The collinear diffraction is studied at an ultrasonic frequency f ≈ 149 MHz under exposure of the crystal to an uncollimated laser light beam at a wavelength λ = 633 nm and at an angle of divergence as large as 4°. It is shown that the collinear diffraction along the direction forbidden for acousto-optical interactions of plane waves occurs only under conditions where the light beam is uncollimated and the diffraction efficiency increases with an increase in the divergence of the light beam. It is proved that the attenuation of an acoustic wave brings about a decrease in the diffraction efficiency and an increase in the transmission bandwidth of the device used. A model of the collinear acousto-optical filter based on a paratellurite crystal with an interaction length l = 2.7 cm is analyzed. The collinear acousto-optical filter is characterized by a high resolving power (∼3000), a high diffraction efficiency (I1/I0 ≈ 0.8), and a large angular aperture (Δϕ ≈ 4°). This makes collinear diffraction promising for use in acousto-optical filters based on paratellurite crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Balakshiy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-Optics (Radio i Svyaz’, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).Google Scholar
  3. 3.
    A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994).Google Scholar
  4. 4.
    B. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, Malabar, Florida, 1990).Google Scholar
  5. 5.
    N. A. Esepkina, A. A. Lipovskii, V. Yu. Petrun’kin, and A. S. Shcherbakov, in Acousto-Optical Methods of Information Processing (Nauka, Leningrad, 1978), pp. 22–30.Google Scholar
  6. 6.
    I. C. Chang, Proc. SPIE 90, 12 (1976).ADSGoogle Scholar
  7. 7.
    S. E. Harris, S. T. K. Nieh, and D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).CrossRefGoogle Scholar
  8. 8.
    V. B. Voloshinov, I. V. Nikolaev, and V. N. Parygin, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 21(2), 42 (1980).Google Scholar
  9. 9.
    V. B. Voloshinov and V. N. Parygin, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 21(1), 90 (1980).Google Scholar
  10. 10.
    V. N. Parygin, A. V. Vershubskii, and Yu. G. Rezvov, Opt. Spektrosk. 90, 144 (2001) [Opt. Spectrosc. 90, 129 (2001)].Google Scholar
  11. 11.
    V. N. Parygin, A. V. Vershoubskiy, and Yu. G. Resvov, J. Opt. A: Pure Appl. Opt. 3, 32 (2001).CrossRefGoogle Scholar
  12. 12.
    S. N. Antonov, E. V. Kuznetsova, V. I. Mirgorodskii, and V. V. Proklov, Akust. Zh. 28, 433 (1982) [Sov. Phys. Acoust. 28, 257 (1982)].Google Scholar
  13. 13.
    V. B. Voloshinov and E. A. Lemyaskina, Acta Phys. Slov. 46, 733 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Yu. S. Dobrolenskiy
    • 1
  • V. B. Voloshinov
    • 1
  • V. N. Parygin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations