Advertisement

Physics of Atomic Nuclei

, Volume 68, Issue 4, pp 634–649 | Cite as

Monopoles in gluodynamics and blocking from continuum to lattice

  • M. N. Chernodub
  • K. Ishiguro
  • T. Suzuki
On the 70th Anniversary of Yurii Antonovich Simonov
  • 23 Downloads

Abstract

We review the method of blocking of topological defects from continuum to lattice as a nonperturbative tool to construct effective actions for these defects. The actions are formulated in the continuum limit, while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. We demonstrate the success of the method in deriving the effective actions for Abelian monopoles in the pure SU(2) gauge models in an Abelian gauge. In particular, we discuss the gluodynamics in three and four spacetime dimensions at zero and nonzero temperatures. Besides the action, the quantities of our interest are the monopole density, the magnetic Debye mass, and the monopole condensate.

Keywords

Elementary Particle Lattice Spacing Effective Action Continuum Limit Spacetime Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bietenholz and U. J. Wiese, Nucl. Phys. B 464, 319 (1996); Phys. Lett. B 378, 222 (1996); W. Bietenholz, Int. J. Mod. Phys. A 15, 3341 (2000).CrossRefADSGoogle Scholar
  2. 2.
    K. Symanzik, Nucl. Phys. B 226, 187, 205 (1983); B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985); G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).ADSMathSciNetGoogle Scholar
  3. 3.
    M. N. Chernodub, K. Ishiguro, and T. Suzuki, Prog. Theor. Phys. (in press); hep-lat/0407040.Google Scholar
  4. 4.
    M. N. Chernodub, K. Ishiguro, and T. Suzuki, J. High Energy Phys. 0309, 027 (2003).Google Scholar
  5. 5.
    M. N. Chernodub, K. Ishiguro, and T. Suzuki, Phys. Rev. D 69, 094508 (2004).Google Scholar
  6. 6.
    S. Fujimoto, S. Kato, and T. Suzuki, Phys. Lett. B 476, 437 (2000).ADSMathSciNetGoogle Scholar
  7. 7.
    T. L. Ivanenko, A. V. Pochinsky, and M. I. Polikarpov, Phys. Lett. B 252, 631 (1990).ADSGoogle Scholar
  8. 8.
    T. Suzuki, Nucl. Phys. B (Proc. Suppl.) 30, 176 (1993); M. N. Chernodub and M. I. Polikarpov, in Confinement, Duality, and Nonperturbative Aspects of QCD, Ed. by P. van Baal (Plenum Press, New York, 1998), p. 387; hep-th/9710205; R. W. Haymaker, Phys. Rep. 315, 153 (1999).CrossRefADSGoogle Scholar
  9. 9.
    H. Shiba and T. Suzuki, Phys. Lett. B 351, 519 (1995); N. Arasaki, S. Ejiri, S. I. Kitahara, et al., Phys. Lett. B 395, 275 (1997); M. N. Chernodub, S. Fujimoto, S. Kato, et al., Phys. Rev. D 62, 094506 (2000); K. Yamagishi, T. Suzuki, and S. I. Kitahara, J. High Energy Phys. 0002, 012 (2000).ADSGoogle Scholar
  10. 10.
    G. ’t Hooft, in High-Energy Physics, EPS International Conference, Palermo, 1975, Ed. by A. Zichichi, p. 1225; S. Mandelstam, Phys. Rep. 23, 245 (1976).Google Scholar
  11. 11.
    Y. A. Simonov, Usp. Fiz. Nauk 166, 337 (1996) [Phys. Usp. 39, 313 (1996)]; hep-ph/0211330; D. S. Kuzmenko, V. I. Shevchenko, and Yu. A. Simonov, hep-ph/0310190.Google Scholar
  12. 12.
    G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).CrossRefADSGoogle Scholar
  13. 13.
    M. N. Chernodub, M. I. Polikarpov, and A. I. Veselov, Phys. Lett. B 399, 267 (1997); Nucl. Phys. B (Proc. Suppl.) 49, 307 (1996); A. DiGiacomo and G. Paffuti, Phys. Rev. D 56, 6816 (1997).ADSMathSciNetGoogle Scholar
  14. 14.
    T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990); G. S. Bali, V. Bornyakov, M. Müller-Preussker, and K. Schilling, Phys. Rev. D 54, 2863 (1996).CrossRefADSGoogle Scholar
  15. 15.
    A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J. Wiese, Phys. Lett. B 198, 516 (1987); A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys. B 293, 461 (1987).ADSGoogle Scholar
  16. 16.
    S. Ejiri, S. I. Kitahara, Y. Matsubara, and T. Suzuki, Phys. Lett. B 343, 304 (1995); S. Ejiri, Phys. Lett. B 376, 163 (1996).ADSGoogle Scholar
  17. 17.
    A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, et al., Phys. Lett. B 537, 291 (2002).ADSGoogle Scholar
  19. 19.
    S. Maedan and T. Suzuki, Prog. Theor. Phys. 81, 229 (1989); T. Suzuki, Prog. Theor. Phys. 81, 752 (1989).CrossRefADSGoogle Scholar
  20. 20.
    T. A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478 (1980).CrossRefADSGoogle Scholar
  21. 21.
    M. Teper, Phys. Lett. B 311, 223 (1993).ADSGoogle Scholar
  22. 22.
    M. J. Teper, Phys. Rev. D 59, 014512 (1999); Phys. Lett. B 397, 223 (1997).Google Scholar
  23. 23.
    V. Bornyakov and R. Grigorev, Nucl. Phys. B (Proc. Suppl.) 30, 576 (1993).ADSGoogle Scholar
  24. 24.
    F. Karsch, M. Oevers, and P. Petreczky, Phys. Lett. B 442, 291 (1998).ADSGoogle Scholar
  25. 25.
    K. Ishiguro, T. Suzuki, and T. Yazawa, J. High Energy Phys. 0201, 038 (2002).Google Scholar
  26. 26.
    G. S. Bali et al., Phys. Rev. Lett. 71, 3059 (1993).CrossRefADSGoogle Scholar
  27. 27.
    J. Fingberg, U. Heller, and F. Karsch, Nucl. Phys. B 392, 493 (1993).CrossRefADSGoogle Scholar
  28. 28.
    F. V. Gubarev, E. M. Ilgenfritz, M. I. Polikarpov, and T. Suzuki, Phys. Lett. B 468, 134 (1999).ADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • M. N. Chernodub
    • 1
  • K. Ishiguro
    • 2
  • T. Suzuki
    • 2
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Institute for Theoretical PhysicsKanazawa UniversityKanazawaJapan

Personalised recommendations