Advertisement

Journal of Experimental and Theoretical Physics

, Volume 100, Issue 2, pp 229–241 | Cite as

Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

  • O. N. Gadomskii
  • A. G. Glukhov
Atoms, Molecules, Optics
  • 28 Downloads

Abstract

The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms.

Keywords

Laser Radiation Transition Frequency Frequency Shift Radiation Field Radiation Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Nauka, Moscow, 1986; Gordon and Breach, New York, 1987).Google Scholar
  2. 2.
    V. I. Balykin, V. G. Minogin, and V. S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000).CrossRefADSGoogle Scholar
  3. 3.
    O. N. Gadomskii, Usp. Fiz. Nauk 170, 1145 (2000) [Phys. Usp. 43, 1071 (2000)].Google Scholar
  4. 4.
    H. T. Dung, L. Knöl, and D.-G. Welsch, Phys. Rev. A 66, 063 810 (2002).Google Scholar
  5. 5.
    V. I. Yukalov, Eur. Phys. J. D 13, 83 (2001).CrossRefADSGoogle Scholar
  6. 6.
    R. H. Lemberg, Phys. Rev. A 3, 889 (1970).ADSGoogle Scholar
  7. 7.
    M. J. Stephen, J. Chem. Phys. 40, 569 (1964).CrossRefGoogle Scholar
  8. 8.
    O. N. Gadomskii, Teor. Mat. Fiz. 106, 145 (1996).zbMATHGoogle Scholar
  9. 9.
    O. N. Gadomsky and K. V. Krutitsky, J. Eur. Opt. Soc. 9, 343 (1997).MathSciNetGoogle Scholar
  10. 10.
    O. N. Gadomskii and Yu. Yu. Voronov, Pis’ma Zh. Éksp. Teor. Fiz. 69, 750 (1999) [JETP Lett. 69, 804 (1999)].MathSciNetGoogle Scholar
  11. 11.
    O. N. Gadomskii and A. S. Kunitsyn, Zh. Prikl. Spektrosk. 67, 777 (2000).Google Scholar
  12. 12.
    V. V. Klimov and V. S. Letokhov, Phys. Rev. B 62, 1639 (2000).CrossRefADSGoogle Scholar
  13. 13.
    V. L. Berkovits, A. B. Gordeeva, and V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 43, 985 (2001) [Phys. Solid State 43, 1018 (2001)].Google Scholar
  14. 14.
    O. N. Gadomskii and K. Yu. Moiseev, Opt. Spektrosk. 92, 613 (2002) [Opt. Spectrosc. 92, 560 (2002)].Google Scholar
  15. 15.
    M. G. Benedict, V. A. Malyshev, E. D. Trifonov, and A. I. Zaitsev, Phys. Rev. A 43, 3845 (1991).CrossRefADSGoogle Scholar
  16. 16.
    M. E. Crenshaw and C. M. Bowden, Phys. Rev. A 53, 1139 (1996).CrossRefADSGoogle Scholar
  17. 17.
    O. N. Gadomskii and S. V. Sukhov, Kvantovaya Élektron. (Moscow) 25, 529 (1998).Google Scholar
  18. 18.
    A. S. Davydov, Quantum Mechanics (Fizmatgiz, Moscow, 1963; Pergamon, Oxford, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • O. N. Gadomskii
    • 1
  • A. G. Glukhov
    • 1
  1. 1.Ul’yanovsk State UniversityUl’yanovskRussia

Personalised recommendations