Acoustical Physics

, Volume 51, Issue 2, pp 160–166 | Cite as

Optoacoustic conversion in suspensions: The competition of mechanisms and statistical characteristics

  • S. V. Egerev
  • O. B. Ovchinnikov
  • A. V. Fokin


Optoacoustic conversion in diluted suspensions under the effect of nanosecond laser pulses is considered. The mode of operation with moderate values of the laser fluence is studied theoretically and experimentally. In this mode, a competition of the thermooptical and cavitation mechanisms of sound conversion is observed, which leads to considerable fluctuations of the acoustic response from one laser pulse to another. Analytical expressions for the basic characteristics of the acoustic signal are obtained. A simulation of the statistical characteristics of the cavitation contribution to the signal is performed using the Monte Carlo method. The experiment is based on the use of second harmonic pulses of a YAG laser and test suspensions. The histograms of the amplitudes of acoustic signals can be used to discriminate between the mechanisms of optoacoustic conversion and also can serve as the basis for diagnosing a low content of an insoluble phase in a liquid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Egerev and A. E. Pashin, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 27(3), 259 (1991).Google Scholar
  2. 2.
    S. V. Egerev, O. B. Ovchinnikov, and A. E. Pashin, Pis’ma Zh. Tekh. Fiz. 18(21), 71 (1992) [Sov. Tech. Phys. Lett. 18, 715 (1992)].Google Scholar
  3. 3.
    A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, and S. E. Skipetrov, Kvantovaya Élektron. (Moscow) 29(3), 215 (1999).Google Scholar
  4. 4.
    W. Beatty, S. Meresse, and P. Gounon, J. Cell Biol. 145, 689 (1999).CrossRefGoogle Scholar
  5. 5.
    A. A. Karabutov and E. Savateeva, Proc. SPIE 4256, 179 (2003).ADSGoogle Scholar
  6. 6.
    S. V. Egerev, Ya. O. Simanovskii, and A. E. Pashin, in Advances in Nonlinear Acoustics (World Sci., Singapore, 1993), pp. 436–442.Google Scholar
  7. 7.
    S. S. Alimpiev, Ya. O. Simanovskii, S. V. Egerev, and A. E. Pashin, Laser Chem. 16, 63 (1995).Google Scholar
  8. 8.
    A. C. Tam, Rev. Mod. Phys. 58(2), 381 (1986).CrossRefADSGoogle Scholar
  9. 9.
    T. Autrey, S. Egerev, N. Foster, and A. Fokin, Rev. Sci. Instrum. 74(1), 628 (2003).CrossRefADSGoogle Scholar
  10. 10.
    L. M. Lyamshev, Laser Thermooptical Excitation of Sound (Nauka, Moscow, 1979) [in Russian].Google Scholar
  11. 11.
    S. V. Egerev and A. E. Pashin, Zh. Tekh. Fiz. 51(1), 226 (1981) [Sov. Phys. Tech. Phys. 26, 138 (1981)].Google Scholar
  12. 12.
    T. A. Dunina, S. V. Egerev, and L. M. Lyamshev, Akust. Zh. 28, 192 (1982) [Sov. Phys. Acoust. 28, 116 (1982)].Google Scholar
  13. 13.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves, 2nd ed. (Nauka, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    M. L. Lyamshev, Pis’ma Zh. Tekh. Fiz. 26(8), 56 (2000) [Tech. Phys. Lett. 26, 341 (2000)].Google Scholar
  15. 15.
    V. V. Zosimov and L. M. Lyamshev, Usp. Fiz. Nauk 165, 361 (1995) [Phys. Usp. 38, 347 (1995)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • S. V. Egerev
    • 1
  • O. B. Ovchinnikov
    • 1
  • A. V. Fokin
    • 1
  1. 1.Andreev Acoustics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations