Advertisement

Astronomy Letters

, Volume 31, Issue 3, pp 147–151 | Cite as

Constraints on the photon charge from observations of extragalactic sources

  • V. V. Kobychev
  • S. B. Popov
Article

Abstract

Having analyzed high-resolution observations of extragalactic compact radio sources with modern systems of radio telescopes, we obtained an estimate of the upper limit for the photon electric charge, eγ ≲ 3×10−33 of the elementary charge (assuming the photon charge to be energy independent). This is three orders of magnitude better than the limit obtained from radio pulsar timing. We also set a limit on the charge of a gamma-ray (energy ∼0.1 MeV) photon. In the future, the estimate based on extragalactic sources can be improved significantly.

Key words

fundamental constants radio sources extragalactic magnetic fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Aller, H. D. Aller, and P. A. Hughes, Astrophys. J. 586, 33 (2003); astro-ph/0211265.CrossRefADSGoogle Scholar
  2. 2.
    G. Barbiellini and G. Cocconi, Nature 329, 21 (1987).CrossRefADSGoogle Scholar
  3. 3.
    N. Bartel, Astron. Latin America, ADeLA Publ. Ser. 1, 35 (2003); astro-ph/0303342.ADSGoogle Scholar
  4. 4.
    M. A. Brentjens and A. G. de Bruyn, The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, Charlottesville, VA, USA, May 31–June 4, 2003, Ed. by T. H. Reiprich, J. C. Kempner, and N. Socker, Publ. electronically at http://www.astro.virginia.edu/coolflow/proc.php.
  5. 5.
    C. Caprini, S. Biller, and P. G. Ferreira, hep-ph/0310066 (2003).Google Scholar
  6. 6.
    C. L. Carilli and G. B. Taylor, Annu. Rev. Astron. Astrophys. 40, 319 (2002); astro-ph/0110655.CrossRefADSGoogle Scholar
  7. 7.
    E. Churazov, W. Forman, C. Jones, and H. Böhringer, Astrophys. J. 590, 225 (2003).CrossRefADSGoogle Scholar
  8. 8.
    T. E. Clarke, P. P. Kronberg, and H. Böhringer, Astrophys. J. 547, L111 (2001).CrossRefADSGoogle Scholar
  9. 9.
    G. Cocconi, Phys. Lett. B 206, 705 (1988).Google Scholar
  10. 10.
    G. Cocconi, Am. J. Phys. 60, 750 (1992).CrossRefADSGoogle Scholar
  11. 11.
    E. Fomalont and M. Reid, astro-ph/0409611 (2004).Google Scholar
  12. 12.
    P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994).CrossRefADSGoogle Scholar
  13. 13.
    A. P. Lobanov, L. I. Gurvits, S. Frey, et al., Astrophys. J. 547, 714 (2001).CrossRefADSGoogle Scholar
  14. 14.
    G. Raffelt, Phys. Rev. D 50, 7729 (1994); hep-ph/9409461.CrossRefADSGoogle Scholar
  15. 15.
    M. J. Rioja and R. W. Porcas, Astron. Astrophys. 355, 552 (2000); astro-ph/0002097.ADSGoogle Scholar
  16. 16.
    R. E. Rusk, Ph. D. Thesis (Univ. Toronto, 1988).Google Scholar
  17. 17.
    D. Ryu, H. Kang, and P. L. Biermann, Astron. Astrophys. 335, 19 (1998).ADSGoogle Scholar
  18. 18.
    B. E. Schaefer and K. C. Walker, Astrophys. J. Lett. 511, L89 (1999).ADSGoogle Scholar
  19. 19.
    W. K. Scott, E. B. Fomalont, S. Horiuchi, et al., Astrophys. J., Supp. Ser. (2004) (in press); astro-ph/0407041.Google Scholar
  20. 20.
    Y. K. Semertzidis, G. T. Danby, and D. M. Lazarus, Phys. Rev. D 67, 017701 (2003).Google Scholar
  21. 21.
    C. Sivaram, Am. J. Phys. 63, 1473 (1994).Google Scholar
  22. 22.
    L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002); astro-ph/0207240.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. V. Kobychev
    • 1
  • S. B. Popov
    • 2
    • 3
  1. 1.Institute for Nuclear ResearchNational Academy of Sciences of UkraineKievUkraine
  2. 2.University of PadovaPadovaItaly
  3. 3.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations