Orientational effect of the texture of a carbon-nanotube film on CKα a radiation intensity

  • A. V. Okotrub
  • S. B. Dabagov
  • A. G. Kudashov
  • A. V. Gusel’nikov
  • I. Kinloch
  • A. H. Windle
  • A. L. Chuvilin
  • L. G. Bulusheva
Condensed Matter

Abstract

The angular dependence of the intensity of CKα radiation measured from a film of oriented carbon nanotubes shows an increase in the yield of x-ray fluorescence along the growth direction of the nanotubes. The angular distribution of the intensity of scattered x rays is close in magnitude to the angular distribution of the directivity of nanotubes in the film that is determined by analyzing an electron-microscope image. To explain the propagation of radiation along the nanotubes, two mechanisms are proposed on the basis of reflection from inner walls of a tube (channeling) and an anomalous dispersion of CKα photons in the carbon medium.

PACS numbers

07.85.Fv 41.50.+h 61.85.+p 78.70.Ck 81.07.De 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Klimov and V. S. Letokhov, Phys. Lett. A 222, 424 (1996).CrossRefADSGoogle Scholar
  2. 2.
    G. V. Dedkov, Nucl. Instrum. Methods Phys. Res. B 143, 584 (1998).CrossRefADSGoogle Scholar
  3. 3.
    N. K. Zhevago and V. I. Glebov, Phys. Lett. A 250, 360 (1998).CrossRefADSGoogle Scholar
  4. 4.
    S. B. Dabagov, Usp. Fiz. Nauk 173, 1083 (2003) [Phys. Usp. 46, 1053 (2003)].Google Scholar
  5. 5.
    M. A. Kumakhov and F. F. Komarov, Phys. Rep. 191, 289 (1990).CrossRefADSGoogle Scholar
  6. 6.
    M. A. Kumakhov, Proc. SPIE 4155, 1 (2000).ADSGoogle Scholar
  7. 7.
    G. Cappuccio, S. B. Dabagov, A. Pifferi, and C. Gramaccioni, Appl. Phys. Lett. 78, 2822 (2001).CrossRefADSGoogle Scholar
  8. 8.
    S. B. Dabagov, in X-ray and Inner-Shell Processes, Ed. by A. Bianconi, A. Marcelli, and N. L. Saini (AIP, New York, 2003); AIP Conf. Proc. 652, 89 (2003); S. Bellucci and S. B. Dabagov, J. Phys.: Condens. Matter 15, 3171 (2003).Google Scholar
  9. 9.
    M. Terrones, N. Grobert, J. P. Zhang, et al., Chem. Phys. Lett. 285, 299 (1998).CrossRefGoogle Scholar
  10. 10.
    I. A. Kinloch, C. Singh, M. Nolte, et al., in Proceedings of NanoteC03: Nanotechnology in Carbon and Related Materials (Univ. of Sussex at Brighton, UK, 2003), p. 10.Google Scholar
  11. 11.
    A. Simunek and G. Wiech, Solid State Commun. 64, 1375 (1987).CrossRefGoogle Scholar
  12. 12.
    A. V. Okotrub, A. V. Gusel’nikov, and L. G. Bulusheva, Nanoengineered Nanofibrous Materials, NATO Science Series Volume NATO-ASI (PST 979397), Ed. by S. I. Guceri, Y. Gogotsi, and V. Kuznetsov (Kluwer Academic, Dordrecht, Netherlands, 2004), p. 347.Google Scholar
  13. 13.
    B. L. Henke et al., At. Data Nucl. Data Tables 27, 1 (1982).CrossRefADSGoogle Scholar
  14. 14.
    S. B. Dabagov, Radiat. Eff. Defects Solids 25, 103 (1993).Google Scholar
  15. 15.
    Z. G. Pinsker, Dynamical Scattering of X-rays in Crystals (Nauka, Moscow, 1974; Springer, Berlin, 1978).Google Scholar
  16. 16.
    M. A. Blokhin, Physics of X-rays (Gostekhizdat, Moscow, 1957) [in Russian].Google Scholar
  17. 17.
    A. M. Zheltikov, Usp. Fiz. Nauk 170, 1203 (2000) [Phys. Usp. 43, 1125 (2000)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. V. Okotrub
    • 1
  • S. B. Dabagov
    • 2
    • 3
  • A. G. Kudashov
    • 1
  • A. V. Gusel’nikov
    • 1
  • I. Kinloch
    • 4
  • A. H. Windle
    • 4
  • A. L. Chuvilin
    • 5
  • L. G. Bulusheva
    • 1
  1. 1.Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Laboratori Nazionali di FrascatINFNFrascati (RM)Italy
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Department of Materials Science and MetallurgyCambridgeUK
  5. 5.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations