Technical Physics Letters

, Volume 31, Issue 2, pp 94–96 | Cite as

Spectral dependence of the optical rectification effect in nanographite films

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • A. P. Volkov
  • Yu. P. Svirko


The spectral dependence of the optical rectification effect in nanostructured carbon (nanographite) films obtained by plasmachemical deposition was studied in a wavelength range from 266 to 1900 nm. In this range, the amplitude of the electric signal observed when films were irradiated by nanosecond light pulses of constant power increases in inverse proportion to the laser wavelength. The experimental results confirm the assumptions made previously concerning the mechanism of the observed effect. It is suggested that nanographite films are promising materials for detectors of ultrashort laser pulses in the IR, visible, and UV spectral intervals and for generators of electromagnetic radiation operating in the terahertz frequency range.


Laser Pulse Wavelength Range Electromagnetic Radiation Electric Signal Light Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Ward, Phys. Rev. 143, 569 (1966).CrossRefADSGoogle Scholar
  2. 2.
    B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Élektron. (Moscow) 7, 5 (1980).Google Scholar
  3. 3.
    G. N. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Appl. Phys. Lett. 84, 4854 (2004).CrossRefADSGoogle Scholar
  4. 4.
    G. N. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Pis’ma Zh. Tekh. Fiz. 30(17), 88 (2004) [Tech. Phys. Lett. 30, 750 (2004)].Google Scholar
  5. 5.
    A. N. Obraztsov, A. P. Volkov, A. I. Boronin, et al., Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
  6. 6.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
  7. 7.
    G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992).Google Scholar
  8. 8.
    B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).Google Scholar
  9. 9.
    G. M. Mikheev, Kvantovaya Élektron. (Moscow) 18, 337 (1991).Google Scholar
  10. 10.
    M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. 177, 580 (1969).CrossRefADSGoogle Scholar
  11. 11.
    R. R. Jacobs, J. Goldhar, D. Eimerl, et al., Appl. Phys. Lett. 37, 264 (1980).ADSGoogle Scholar
  12. 12.
    G. Venkin, D. A. Esikov, D. I. Maleev, and G. M. Mikheev, Kvantovaya Élektron. (Moscow) 13, 379 (1986).Google Scholar
  13. 13.
    M. Anisimova, I. M. Vikulin, F. A. Zaitov, and Sh. D. Kurmashev, Semiconductor Photodetectors: Ultraviolet, Visible, and Near-Infrared Spectral Regions (Radio i Svyaz’, Moscow, 1984) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • R. G. Zonov
    • 1
  • A. N. Obraztsov
    • 1
  • A. P. Volkov
    • 2
  • Yu. P. Svirko
    • 3
  1. 1.Institute of Applied Mechanics, Ural DivisionRussian Academy of SciencesIzhevsk, UdmurtiaRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsJoensuu UniversityJoensuuFinland

Personalised recommendations