Optics and Spectroscopy

, Volume 98, Issue 2, pp 227–234

Integral intensities of absorption bands of silicon tetrafluoride in the gas phase and cryogenic solutions: Experiment and calculation

  • A. P. Burtsev
  • V. N. Bocharov
  • S. K. Ignatov
  • T. D. Kolomiitsova
  • P. G. Sennikov
  • K. G. Tokhadze
  • L. A. Chuprov
  • D. N. Shchepkin
  • O. Schrems
Molecular Spectroscopy

Abstract

The spectral characteristics of the SiF4 molecule in the range 3100–700 cm−1, including the absorption range of the band ν3, are studied in the gas phase at P = 0.4–7 bar and in solutions in liquefied Ar and Kr. In the cryogenic solutions, the relative intensities of the vibrational bands, including the bands of the isotopically substituted molecules, are determined. The absorption coefficients of the combination bands 2ν3, ν3 + ν1, ν3 + ν4, and 3ν4 are measured in the solution in Kr. In the gas phase of the one-component system at an elevated pressure of SiF4, the integrated absorption coefficient of the absorption band ν3 of the 28SiF4 molecule was measured to be A3) = 700 ± 30 km/mol. Within the limits of experimental error, this absorption coefficient is consistent with estimates obtained from independent measurements and virtually coincides with the coefficient A3) = 691 km/mol calculated in this study by the quantum-chemical method MP2(full) with the basis set cc-pVQZ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Bulanov, G. G. Devyatych, A. V. Gusev, et al., Cryst. Res. Technol. 35, 1023 (2000).CrossRefGoogle Scholar
  2. 2.
    G. G. Devyatykh, A. D. Bulanov, A. V. Gusev, et al., Dokl. Akad. Nauk 376, 492 (2001).Google Scholar
  3. 3.
    T. E. Graedel, D. T. Hawkins, and L. D. Claxton, Atmospheric Chemical Compounds. Sources, Occurrence, and Bioassay (Academic, Orlando, 1986).Google Scholar
  4. 4.
    L. Balabaeva and G. Petrova, Khing. Zdraueopaz. 15, 162 (1972).Google Scholar
  5. 5.
    A. E. Guber and U. Köhler, J. Mol. Struct. 348, 209 (1995).CrossRefGoogle Scholar
  6. 6.
    S. K. Ignatov, P. G. Sennikov, L. A. Chuprov, and A. G. Razuvaev, Izv. Ross. Akad. Nauk, Ser. Khim., No. 4, 797 (2003).Google Scholar
  7. 7.
    B. S. Ault, J. Am. Chem. Soc. 105, 5742 (1983).CrossRefGoogle Scholar
  8. 8.
    M. Snels and J. Reuss, Chem. Phys. Lett. 140, 5742 (1987).CrossRefGoogle Scholar
  9. 9.
    J. W. I. Bladel and A. J. Avoird, Chem. Phys. 92, 2837 (1990).ADSGoogle Scholar
  10. 10.
    R.-D. Urban and M. Takami, J. Chem. Phys. 102, 3017 (1995).CrossRefADSGoogle Scholar
  11. 11.
    P. N. Schatz and D. F. Hornig, J. Chem. Phys. 21, 1516 (1953).CrossRefGoogle Scholar
  12. 12.
    C. W. Patterson, R. S. McDowell, N. G. Nereson, et al., J. Mol. Spectrosc. 91, 416 (1982).CrossRefADSGoogle Scholar
  13. 13.
    A. P. Burtsev, I. M. Kislyakov, and T. D. Kolomiitsova, Proc. SPIE 4063, 224 (2000).ADSGoogle Scholar
  14. 14.
    Advances in Spectroscopy, Vol. 23: Molecular Cryospectroscopy, Ed. by R. J. H. Clark and R. E. Hester (Wiley, Chichester, 1995).Google Scholar
  15. 15.
    C. W. Patterson and A. S. Pine, J. Mol. Spectrosc. 96, 404 (1982).CrossRefADSGoogle Scholar
  16. 16.
    R. P. Young and R. N. Jones, Chem. Rev. 71, 219 (1971).CrossRefGoogle Scholar
  17. 17.
    A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds (Khimiya, St. Petersburg, 1996) [in Russian].Google Scholar
  18. 18.
    S. K. Ignatov, P. G. Sennikov, A. G. Razuvaev, et al., Opt. Spektrosk. 90, 732 (2001) [Opt. Spectrosc. 90, 654 (2001)].Google Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Revision A.3 (Gaussian, Pittsburgh, 1998).Google Scholar
  20. 20.
    R. S. McDowell, M. J. Reisfeld, C. W. Patterson, et al., J. Chem. Phys. 77, 4337 (1982).ADSGoogle Scholar
  21. 21.
    T. D. Kolomiitsova, S. M. Melikova, and G. P. Miroshnichenko, Opt. Spektrosk. 59, 1226 (1985).Google Scholar
  22. 22.
    W. D. Reents, Jr., D. L. Wood, and A. M. Mujsce, Anal. Chem. 57, 104 (1985).CrossRefGoogle Scholar
  23. 23.
    T. D. Kolomiitsova and D. N. Shchepkin, Opt. Spektrosk. 66, 1032 (1989) [Opt. Spectrosc. 66, 603 (1989)].Google Scholar
  24. 24.
    C. Haas and D. F. Hornig, J. Chem. Phys. 26, 707 (1957).CrossRefGoogle Scholar
  25. 25.
    M. Gilbert and M. Drifford, J. Chem. Phys. 66, 3205 (1977).CrossRefADSGoogle Scholar
  26. 26.
    E. R. Bernstein and G. R. Meredith, J. Chem. Phys. 67, 4132 (1977).ADSGoogle Scholar
  27. 27.
    F. Bessette, A. Cabana, R. P. Fourmier, and R. Savoie, Can. J. Chem. 48, 410 (1970).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. P. Burtsev
    • 1
  • V. N. Bocharov
    • 1
  • S. K. Ignatov
    • 2
  • T. D. Kolomiitsova
    • 1
  • P. G. Sennikov
    • 3
  • K. G. Tokhadze
    • 1
  • L. A. Chuprov
    • 3
  • D. N. Shchepkin
    • 1
  • O. Schrems
    • 4
  1. 1.Institute of PhysicsSt. Petersburg State UniversityPeterhof, St. PetersburgRussia
  2. 2.Nizhni Novgorod State UniversityNizhni NovgorodRussia
  3. 3.Institute of High-Purity SubstancesRussian Academy of SciencesNizhni NovgorodRussia
  4. 4.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations