Physics of the Solid State

, Volume 47, Issue 2, pp 272–280 | Cite as

Dependence of the magnetization relaxation time of single-domain ferromagnetic particles on damping in the Brown model

  • Yu. P. Kalmykov
  • W. T. Coffey
  • S. V. Titov
Magnetism and Ferroelectricity


Analytical expressions for the magnetization relaxation time τ of single-domain ferromagnetic particles with cubic or uniaxial anisotropy in a static transverse magnetic field are derived. The derivation is based on calculating the escape rate of a Brownian particle from a potential well; this technique is applicable at any damping and is generalized to the case of magnetic relaxation of superparamagnetic particles. The validity of the expressions obtained for τ is checked against a numerical solution of the Landau-Lifshitz-Gilbert equation over the whole range of damping (very low, intermediate, and high damping and the crossover region between low and intermediate damping).


Spectroscopy Magnetic Field Anisotropy State Physics Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Néel, Ann. Geophys. 5(1), 99 (1949).Google Scholar
  2. 2.
    C. P. Pean and J. D. Livingston, J. Appl. Phys. 30(Suppl. 1), 120S (1959).Google Scholar
  3. 3.
    W. F. Brown, Jr., Phys. Rev. 130(5), 1677 (1963).CrossRefADSGoogle Scholar
  4. 4.
    W. F. Brown, Jr., IEEE Trans. Magn. 15(5), 1196 (1979).CrossRefGoogle Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8(1), 153 (1935).Google Scholar
  6. 6.
    T. L. Gilbert, Phys. Rev. 100(5), 1243 (1956).Google Scholar
  7. 7.
    Yu. L. Raikher and M. I. Shliomis, Adv. Chem. Phys. 87, 595 (1994).Google Scholar
  8. 8.
    W. T. Coffey, P. J. Cregg, and Yu. P. Kalmykov, Adv. Chem. Phys. 83, 263 (1993).Google Scholar
  9. 9.
    I. Klik and L. Gunther, J. Stat. Phys. 60(3–4), 473 (1990); J. Appl. Phys. 67 (9), 4505 (1990).Google Scholar
  10. 10.
    H. A. Kramers, Physica (Utrecht) 7(4), 284 (1940).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62(2), 251 (1990).CrossRefADSGoogle Scholar
  12. 12.
    W. T. Coffey, D. A. Garanin, and D. McCarthy, Adv. Chem. Phys. 117, 528 (2001).Google Scholar
  13. 13.
    V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys. 85(2), 1018 (1986).ADSGoogle Scholar
  14. 14.
    V. I. Mel’nikov, Phys. Rep. 209(1–2), 1 (1991).ADSGoogle Scholar
  15. 15.
    D. A. Smith and F. A. de Rozario, J. Magn. Magn. Mater. 3(3), 219 (1976).CrossRefADSGoogle Scholar
  16. 16.
    J. S. Langer, Ann. Phys. (N.Y.) 54(2), 258 (1969).CrossRefGoogle Scholar
  17. 17.
    P. M. Déjardin, D. S. F. Crothers, W. T. Coffey, and D. J. McCarthy, Phys. Rev. E 63(2), 021102 (2001).Google Scholar
  18. 18.
    I. Eisenstein and A. Aharoni, Phys. Rev. B 16(3), 1278 (1977).ADSGoogle Scholar
  19. 19.
    I. Eisenstein and A. Aharoni, Phys. Rev. B 16(3), 1285 (1977).ADSGoogle Scholar
  20. 20.
    W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).Google Scholar
  21. 21.
    W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy, and W. Wernsdorfer, Phys. Rev. Lett. 80(25), 5655 (1998).CrossRefADSGoogle Scholar
  22. 22.
    D. A. Garanin, E. C. Kennedy, D. S. F. Crothers, and W. T. Coffey, Phys. Rev. E 60(6), 6499 (1999).CrossRefADSGoogle Scholar
  23. 23.
    Yu. P. Kalmykov, Phys. Rev. E 62(1), 227 (2000).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation, 2nd ed. (World Sci., Singapore, 2004).Google Scholar
  25. 25.
    Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 40(9), 1642 (1998) [Phys. Solid State 40, 1492 (1998)].Google Scholar
  26. 26.
    Yu. P. Kalmykov and S. V. Titov, Zh. Éksp. Teor. Fiz. 115(1), 101 (1999) [JETP 88, 58 (1999)].Google Scholar
  27. 27.
    Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, Phys. Rev. B 58(6), 3267 (1998).CrossRefADSGoogle Scholar
  28. 28.
    Yu. P. Kalmykov and S. V. Titov, Phys. Rev. Lett. 82(14), 2967 (1999).CrossRefADSGoogle Scholar
  29. 29.
    Yu. P. Kalmykov and S. V. Titov, J. Magn. Magn. Mater. 210(1–2), 233 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Yu. P. Kalmykov
    • 1
  • W. T. Coffey
    • 2
  • S. V. Titov
    • 3
  1. 1.Laboratoire Mathématiques et Physique pour les SystémesUniversité de PerpignanPerpignan CedexFrance
  2. 2.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  3. 3.Institute of Radio Engineering and ElectronicsRussian Academy of ScienceFryazino, Moscow oblastRussia

Personalised recommendations