Advertisement

Physics of Atomic Nuclei

, Volume 68, Issue 2, pp 326–331 | Cite as

Formation of antideuterons in heavy-ion collisions

  • B. L. Ioffe
  • I. A. Shushpanov
  • K. N. Zyablyuk
Elementary Particles and Fields Theory

Abstract

The antideuteron production rate at high-energy heavy-ion collisions is calculated based on the concept of \(\bar d\) formation by antinucleons which move in the mean field of the fireball constituents (mainly pions). The explicit formula is presented for the coalescence parameter B2 in terms of deuteron binding energy and fireball volume.

Keywords

Binding Energy Elementary Particle Production Rate Explicit Formula Deuteron Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. G. Bearden et al., Phys. Rev. Lett. 85, 2681 (2000).CrossRefADSGoogle Scholar
  2. 2.
    C. Adler et al., Phys. Rev. Lett. 87, 262301 (2001).Google Scholar
  3. 3.
    T. A. Armstrong et al., Phys. Rev. Lett. 85, 2685 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. Z. Mekjian, Phys. Rev. C 17, 1051 (1978).CrossRefADSGoogle Scholar
  5. 5.
    L. P. Csernai and J. I. Kapusta, Phys. Rep. 131, 223 (1986).CrossRefADSGoogle Scholar
  6. 6.
    S. Mrowczynski, Phys. Lett. B 308, 216 (1993).ADSGoogle Scholar
  7. 7.
    M. Gyulassy, K. Frankel, and E. A. Rambler, Nucl. Phys. A 402, 596 (1983).ADSGoogle Scholar
  8. 8.
    J. L. Nagle, B. S. Kumar, D. Kusnezov, et al., Phys. Rev. C 53, 367 (1996).CrossRefADSGoogle Scholar
  9. 9.
    P. Braun-Munziger, I. Heppe, and J. Stachel, Phys. Lett. B 465, 15 (1999).ADSGoogle Scholar
  10. 10.
    E. V. Shuryak and G. E. Brown, Nucl. Phys. A 717, 322 (2003).ADSGoogle Scholar
  11. 11.
    L. D. Landau, Zh. Éksp. Teor. Fiz. 39, 1856 (1960) [Sov. Phys. JETP 12, 1294 (1960)].Google Scholar
  12. 12.
    H. A. Bethe and R. E. Peierls, Proc. R. Soc. London, Ser. A 149, 176 (1935).ADSGoogle Scholar
  13. 13.
    H. A. Bethe and P. Morrison, Elementary Nuclear Theory, 2nd ed. (Wiley, New York, 1956; IL, Moscow, 1958).Google Scholar
  14. 14.
    V. L. Eletsky and B. L. Ioffe, Phys. Rev. Lett. 78, 1010 (1997).CrossRefADSGoogle Scholar
  15. 15.
    V. L. Eletsky, B. L. Ioffe, and J. I. Kapusta, Eur. Phys. J. A 3, 381 (1998).CrossRefADSGoogle Scholar
  16. 16.
    V. L. Eletsky and B. L. Ioffe, Phys. Lett. B 401, 327 (1997).ADSGoogle Scholar
  17. 17.
    S. Pal, C. M. Ko, and Zi-wei Lin, Phys. Rev. C 64, 042201(R) (2001).Google Scholar
  18. 18.
    M. van Leeuwen, Nucl. Phys. A 715, 161 (2003).ADSGoogle Scholar
  19. 19.
    S. V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002).Google Scholar
  20. 20.
    W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).CrossRefGoogle Scholar
  21. 21.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950).MathSciNetGoogle Scholar
  22. 22.
    I. Pomeranchuk, Dokl. Akad. Nauk SSSR 78, 889 (1951).Google Scholar
  23. 23.
    H. Appelshaser et al., Eur. Phys. J. C 2, 611 (1998).Google Scholar
  24. 24.
    J. Stachel, Nucl. Phys. A 654, 119 (1999).ADSGoogle Scholar
  25. 25.
    C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002).Google Scholar
  26. 26.
    C. Adler et al., Phys. Rev. Lett. 87, 112303 (2001).Google Scholar
  27. 27.
    P. Braun-Munziger et al., Phys. Lett. B 518, 41 (2001).ADSGoogle Scholar

Copyright information

© Pleaides Publishing, Inc. 2005

Authors and Affiliations

  • B. L. Ioffe
    • 1
  • I. A. Shushpanov
    • 1
  • K. N. Zyablyuk
    • 1
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations