Mechanism of low-voltage field emission from nanocarbon materials

  • Al. A. Zakhidov
  • A. N. Obraztsov
  • A. P. Volkov
  • D. A. Lyashenko
Electronic Properties of Solids

Abstract

Field emission from nanostructured carbon materials is analyzed by applying the model of emission center in which the emitting surface contains two phases of carbon having substantially different electronic properties. In accordance with this model, the proposed mechanism involves electron tunneling through two potential barriers. The calculated probability of tunneling through two potential barriers implies that the low-voltage field emission observed experimentally can be attributed to the existence of resonant surface states. Numerical estimates suggest that the emission current can increase by at least four orders of magnitude owing to resonant tunneling through two potential barriers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nonincandesced Cathodes, Ed. by M. I. Elinson (Sovetskoe Radio, Moscow, 1974) [in Russian].Google Scholar
  2. 2.
    R. Gomer, Field Emission and Field Ionization (AIP, New York, 1993).Google Scholar
  3. 3.
    D. Temple, Mater. Sci. Eng. R 24, 185 (1999).CrossRefGoogle Scholar
  4. 4.
    A. N. Obraztsov, A. P. Volkov, and I. Yu. Pavlovskii, Pis’ma Zh. Éksp. Teor. Fiz. 68, 56 (1998) [JETP Lett. 68, 59 (1998)].Google Scholar
  5. 5.
    A. P. Volkov, A. N. Obraztsov, I. Yu. Pavlovskii, et al., Poverkhnost, Nos. 5–6, 161 (1999).Google Scholar
  6. 6.
    A. N. Obraztsov, A. P. Volkov, A. I. Boronin, and S. V. Koshcheev, Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
  7. 7.
    J.-M. Bonard, Th. Stoeckli, F. Maier, et al., Phys. Rev. Lett. 81, 1441 (1998).CrossRefADSGoogle Scholar
  8. 8.
    K. A. Dean, P. von Allmen, and B. R. Chalamala, J. Vac. Sci. Technol. B 14, 1959 (1999).Google Scholar
  9. 9.
    Z. L. Wang, R. P. Gao, W. A. de Heer, and P. Poncharal, Appl. Phys. Lett. 80, 856 (2002).ADSGoogle Scholar
  10. 10.
    Y. Chen, D. T. Shaw, and L. Guo, Appl. Phys. Lett. 76, 2469 (2000).ADSGoogle Scholar
  11. 11.
    A. V. Karabutov, V. G. Ralchenko, I. I. Vlasov, et al., J. Vac. Sci. Technol. B 21, 597 (2003).Google Scholar
  12. 12.
    A. V. Karabutov, V. D. Frolov, and V. I. Konov, Diamond Relat. Mater. 10, 840 (2001).Google Scholar
  13. 13.
    J. W. Steeds, A. Gilmore, K. M. Bussmann, et al., Diamond Relat. Mater. 8, 996 (1999).Google Scholar
  14. 14.
    J. B. Cui, M. Stammler, J. Ristein, and L. Ley, J. Appl. Phys. 88, 3667 (2000).ADSGoogle Scholar
  15. 15.
    J. Robertson, Thin Solid Films 296, 61 (1997).CrossRefGoogle Scholar
  16. 16.
    R. V. Latham and D. A. Wilson, J. Phys. D: Appl. Phys. 14, 2139 (1981).CrossRefADSGoogle Scholar
  17. 17.
    K. W. Wong, X. T. Zhou, F. C. K. Au, et al., Appl. Phys. Lett. 75, 2918 (1999).ADSGoogle Scholar
  18. 18.
    M. Kanechika and Y. Mitsushima, Jpn. J. Appl. Phys. 39, 7111 (2000).CrossRefGoogle Scholar
  19. 19.
    Al. A. Zakhidov, A. N. Obraztsov, A. P. Volkov, and D. A. Lyashenko, Zh. Éksp. Teor. Fiz. 124, 1391 (2003) [JETP 97, 1240 (2003)].Google Scholar
  20. 20.
    V. T. Binh and Ch. Adessi, Phys. Rev. Lett. 85, 864 (2000).CrossRefADSGoogle Scholar
  21. 21.
    A. N. Obraztsov, A. P. Volkov, I. Yu. Pavlovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 381 (1999) [JETP Lett. 69, 411 (1999)].Google Scholar
  22. 22.
    K. Suenaga, C. Colliex, and S. Iijima, Appl. Phys. Lett. 78, 70 (2001).CrossRefADSGoogle Scholar
  23. 23.
    Z. Klusek, P. Kowalczyk, and P. Byszewski, Vacuum 63, 145 (2001).Google Scholar
  24. 24.
    C. Kim, B. Kim, S. M. Lee, et al., Appl. Phys. Lett. 79, 1187 (2001).ADSGoogle Scholar
  25. 25.
    T. Kuzumaki, Y. Takamura, H. Ichinose, and Y. Horiike, Appl. Phys. Lett. 78, 3699 (2001).CrossRefADSGoogle Scholar
  26. 26.
    Z. L. Wang, R. P. Gao, W. A. de Heer, and P. Poncharal, Appl. Phys. Lett. 80, 856 (2002).ADSGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, New York, 1977).Google Scholar
  28. 28.
    E. O. Kane, J. Appl. Phys. 32, 83 (1961).CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    E. O. Kane, in Tunneling Phenomena in Solids, Ed. by E. Burstein and S. Lundqvist (Plenum, New York, 1969; Mir, Moscow, 1973).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Al. A. Zakhidov
    • 1
  • A. N. Obraztsov
    • 1
  • A. P. Volkov
    • 1
  • D. A. Lyashenko
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations