Optics and Spectroscopy

, Volume 98, Issue 1, pp 77–83 | Cite as

The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium

  • N. G. Khlebtsov
  • L. A. Trachuk
  • A. G. Mel’nikov
Physical and Quantum Optics

Abstract

The effect of the size, shape, and structure of gold and silver nanoparticles on the dependence of their extinction and integral scattering spectra on the dielectric environment has been investigated. Calculations were performed using the Mie theory for spheres and nanoshells and the T-matrix method for chaotically oriented bispheres, spheroids, and s cylinders with hemispherical ends. The sensitivity of plasmon resonances to variations in the refractive index of the environment in the range 1.3–1.7 for particles of different equivolume size, as well as to variations in the thickness of the metal layer of nanoshells, was studied. For nanoparticles with an equivolume diameter of 15 nm, the maximal shifts of plasmon resonances due to variation in the refractive index of the environment are observed for bispheres and the shifts decrease in the series nanoshells, s cylinders or spheroids, and spheres. For particles 60 nm in diameter, the largest shifts of plasmon resonances occur for nanoshells and the shifts decrease in the series bispheres, s cylinders or spheroids, and spheres. All other conditions being the same, silver nanoparticles are more sensitive to the resonance tuning due to a change in the dielectric environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003).CrossRefMathSciNetGoogle Scholar
  2. 2.
    W. J. Parak, D. Gerion, T. Pellegrino, et al., Nanotechnology 14, R15 (2003).CrossRefADSGoogle Scholar
  3. 3.
    N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko (Kluwer, Dordrecht, 2004), p. 265.Google Scholar
  4. 4.
    Nanobiotechnology: Concept, Applications, and Perspectives, Ed. by C. M. Niemeyer and C. A. Mirkin (Wiley-VCH, Weinheim, 2004).Google Scholar
  5. 5.
    M.-Ch. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
  6. 6.
    Ch. M. Niemeyer, B. Ceyhan, and P. Hazarika, Angew. Chem. Int. Ed. Engl. 42, 5766 (2003).Google Scholar
  7. 7.
    J. J. Storhoff, S. S. Marla, P. Bao, et al., Biosens. Bioelectron. 19, 875 (2004).CrossRefGoogle Scholar
  8. 8.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).Google Scholar
  9. 9.
    U. Kreibig and M. Volmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).Google Scholar
  10. 10.
    L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2004).Google Scholar
  11. 11.
    N. G. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, and B. N. Khlebtsov, Kolloidn. Zh. 65, 552 (2003).Google Scholar
  12. 12.
    N. G. Khlebtsov, V. A. Bogatyrev, B. N. Khlebtsov, et al., Kolloidn. Zh. 65, 679 (2003).Google Scholar
  13. 13.
    Y. Sun and Y. Xia, Analyst 128, 686 (2003).Google Scholar
  14. 14.
    N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, Opt. Spektrosk. 97, 105 (2004) [Opt. Spectrosc. 97, 97 (2004)].Google Scholar
  15. 15.
    C. M. Niemeyer, Angew. Chem. Int. Ed. Engl. 40, 4128 (2001).Google Scholar
  16. 16.
    N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Haes and R. P. van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).Google Scholar
  18. 18.
    J. C. Riboh, A. J. Haes, A. D. McFarland, et al., J. Phys. Chem. B 107, 1772 (2003).CrossRefGoogle Scholar
  19. 19.
    V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, et al., Kolloidn. Zh. 64, 745 (2002).Google Scholar
  20. 20.
    G. Raschke, S. Kowarik, T. Franzl, et al., Nano Lett. 3, 935 (2003).CrossRefGoogle Scholar
  21. 21.
    A. D. McFarland and R. P. van Duyne, Nano Lett. 3, 1057 (2003).CrossRefGoogle Scholar
  22. 22.
    N. Stich, A. Gandhum, V. Matyushin, et al., J. Nanosci. Nanotechnol. 2, 375 (2002).CrossRefGoogle Scholar
  23. 23.
    J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 485 (2003).CrossRefGoogle Scholar
  24. 24.
    W. C. W. Chan, D. J. Maxwell, X. Gao, et al., Curr. Opin. Biotechnol. 13, 40 (2002).CrossRefGoogle Scholar
  25. 25.
    N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, in Electromagnetic and Light Scattering by Nonspherical Particles: Theory and Applications, Ed. by F. Obelleiro, J. L. Rodriguez, and Th. Wriedt (Vigo Univ. Press, Vigo, Spain, 1999), p. 43.Google Scholar
  26. 26.
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., J. Am. Chem. Soc. 122, 4640 (2000).CrossRefGoogle Scholar
  27. 27.
    L. A. Dykman, Ya. M. Krasnov, V. A. Bogatyrev, and N. G. Khelbtsov, Proc. SPIE 4241, 37 (2001).ADSGoogle Scholar
  28. 28.
    D. Roll, J. Malicka, I. Gryczynski, et al., Anal. Chem. 75, 3440 (2003).CrossRefGoogle Scholar
  29. 29.
    X. Liu, H. Yuan, D. Pang, and R. Cai, Spectrochim. Acta A 60, 385 (2004).Google Scholar
  30. 30.
    H. Xu and M. Käll, Sens. Actuators B 87, 244 (2002).CrossRefGoogle Scholar
  31. 31.
    E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).CrossRefADSGoogle Scholar
  32. 32.
    S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).Google Scholar
  33. 33.
    M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. van Duyne, J. Am. Chem. Soc. 123, 1471 (2001).CrossRefGoogle Scholar
  34. 34.
    N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
  35. 35.
    S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).CrossRefGoogle Scholar
  36. 36.
    S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).CrossRefGoogle Scholar
  37. 37.
    S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, Phys. Rev. B 66, 155 431 (2002).Google Scholar
  38. 38.
    L. R. Hirsch, J. B. Jackson, A. Lee, et al., Anal. Chem. 75, 2377 (2003).CrossRefGoogle Scholar
  39. 39.
    L. R. Hirsch, R. J. Stafford, J. A. Bankson, et al., Proc. Natl. Acad. Sci. USA 23, 13 549 (2003).Google Scholar
  40. 40.
    D. W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994).ADSGoogle Scholar
  41. 41.
    R. Jin, Y. W. Cao, C. A. Mirkin, et al., Science 294, 1901 (2001).ADSGoogle Scholar
  42. 42.
    C. L. Haynes and R. P. van Duyne, J. Phys. Chem. B 105, 5599 (2001).CrossRefGoogle Scholar
  43. 43.
    B. T. Draine, Light Scattering by Nonspherical Particles, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Academic, San Diego, 2000), p. 131.Google Scholar
  44. 44.
    E. Hao, S. Li, R. C. Bailey, et al., J. Phys. Chem. B 108, 1224 (2004).Google Scholar
  45. 45.
    http://www-ece.rice.edu/∼halas/; http://www.physics.ucsb.edu/∼eprodan/.
  46. 46.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, J. Colloid Interface Sci. 180, 436 (1996).CrossRefGoogle Scholar
  47. 47.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 12, 4370 (1973).Google Scholar
  48. 48.
    E. Prodan and P. Nordlander, Chem. Phys. Lett. 360, 325 (2002).CrossRefGoogle Scholar
  49. 49.
    N. G. Khlebtsov, Opt. Spektrosk. 88, 656 (2000) [Opt. Spectrosc. 88, 594 (2000)].Google Scholar
  50. 50.
    N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Mel’nikov, Kolloidn. Zh. 62, 844 (2000).Google Scholar
  51. 51.
    A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460 (2000).CrossRefGoogle Scholar
  52. 52.
    E. Hao, R. C. Bailey, G. C. Schatz, et al., Nano Lett. 4, 327 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • N. G. Khlebtsov
    • 1
    • 2
  • L. A. Trachuk
    • 1
  • A. G. Mel’nikov
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations