Plasma Physics Reports

, Volume 31, Issue 1, pp 75–91

The effect of a corona discharge on a lightning attachment

  • N. L. Aleksandrov
  • E. M. Bazelyan
  • Yu. P. Raizer
Low-Temperature Plasma

Abstract

The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Golde, J. Franklin Inst. 286, 451 (1967).Google Scholar
  2. 2.
    R. H. Golde, Lightning Protection (Edward Arnold, London, 1974).Google Scholar
  3. 3.
    R. H. Golde, Lightning (Academic, New York, 1977), Vols. 1, 2.Google Scholar
  4. 4.
    A. M. Mousa, IEEE Trans. Power Delivery 13, 1120 (1998).CrossRefGoogle Scholar
  5. 5.
    M. A. Uman and V. A. Rakov, Bull. Am. Meteorol. Soc., No. 12, 1809 (2002).Google Scholar
  6. 6.
    Proceedings of the IEEE Power Engineering Society General Meeting, Toronto, 2003, Panel “Nonconventional Lightning Mitigation: Fact or Fiction,” IEEE Catalogue No. 03CH37491C (CD-ROM), Library of Congress, 2003106706.Google Scholar
  7. 7.
    Les Renardieres Group, Electra, No. 53, 31 (1977).Google Scholar
  8. 8.
    E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).Google Scholar
  9. 9.
    N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, and N. A. Dyatko, J. Phys. D 30, 1616 (1997).ADSGoogle Scholar
  10. 10.
    N. L. Aleksandrov and E. M. Bazelyan, Plasma Sources Sci. Technol. 8, 285 (1999).CrossRefADSGoogle Scholar
  11. 11.
    N. L. Aleksandrov, É. M. Bazelyan, and A. M. Konchakov, Fiz. Plazmy 27, 928 (2001) [Plasma Phys. Rep. 27, 875 (2001)].Google Scholar
  12. 12.
    É. M. Bazelyan, Élektrichestvo, No. 5, 20 (1987).Google Scholar
  13. 13.
    N. A. Kaptsov, Electrical Phenomena in Gases and Vacuum (Gostekhizdat, Moscow, 1950).Google Scholar
  14. 14.
    C. A. Uhlig, in Proceedings of the High-Voltage Symposium of the National Research Council of Canada, Ottawa, 1956, p. 15–1.Google Scholar
  15. 15.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  16. 16.
    L. B. Loeb, Electrical Coronas (Univ. California Press, Berkeley, 1965).Google Scholar
  17. 17.
    N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., et al., J. Phys. D 34, 3256 (2001).ADSGoogle Scholar
  18. 18.
    N. L. Aleksandrov, É. M. Bazelyan, M. M. Drabkin, et al., Fiz. Plazmy 28, 1032 (2002) [Plasma Phys. Rep. 28, 953 (2002)].Google Scholar
  19. 19.
    N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., et al., in Proceedings of XXVI International Conference on Physics of Ionized Gases, Greifswald, 2003, Vol. 4, p. 19.Google Scholar
  20. 20.
    E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).Google Scholar
  21. 21.
    P. Lalande, A. Bondiou-Clergerie, G. Bacchiega, and I. Gallimberti, C. R. Physique 3, 1375 (2002).CrossRefGoogle Scholar
  22. 22.
    N. L. Aleksandrov, E. M. Bazelyan, and Yu. P. Raizer, in Proceedings of the 26th International Conference on Lightning Protection, Cracow, 2002, Vol. 1, p. 279.Google Scholar
  23. 23.
    N. L. Aleksandrov, E. M. Bazelyan, and Yu. P. Raizer, in Proceedings of the 12th International Conference on Atmospheric Electricity, Versailles, 2003, Vol. 2, p. 451.Google Scholar
  24. 24.
    V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, 2003).Google Scholar
  25. 25.
    É. M. Bazelyan, B. N. Gorin, and V. I. Levitov, Physical and Engineering Principles of Lightning Protection (Gidrometeoizdat, Leningrad, 1978).Google Scholar
  26. 26.
    N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Yu. P. Raizer, in Proceedings of the 27th International Conference on Lightning Protection, Avignon, 2004, Vol. 1, p. 427.Google Scholar
  27. 27.
    N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., et al., in Proceedings of the 27th International Conference on Lightning Protection, Avignon, 2004, Vol. 1, p. 407.Google Scholar
  28. 28.
    D. Mackerras, M. Darveniza, and A. C. Liew, IEEE Proc. Sci. Meas. Technol. 144, 1 (1997).Google Scholar
  29. 29.
    I. D. Chalmers, J. C. Evans, and W. H. Siew, IEEE Proc. Sci. Meas. Technol. 146, 57 (1999).Google Scholar
  30. 30.
    N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., et al., in Proceedings of IX Symposium on Gaseous Dielectrics, Ellicott City, 2002, Ed. by L. G. Christophorou and J. K. Olthoff (Plenum, New York, 2002), p. 149.Google Scholar
  31. 31.
    G. Carrara and L. Thione, in Proceedings of the IEEE Summer Meeting, 1974, Paper CH 0910-0-PWR.41.Google Scholar
  32. 32.
    G. Carrara and L. Thione, IEEE Trans. Power App. Syst. 95, 512 (1976).Google Scholar
  33. 33.
    É. M. Bazelyan, Elektrichestvo, No. 7, 22 (1977).Google Scholar
  34. 34.
    B. N. Gorin and A. V. Shkilev, Elektrichestvo, No. 2, 29 (1974).Google Scholar
  35. 35.
    C. B. Moore, G. D. Aulich, and W. Rison, Geophys. Res. Lett. 27, 1487 (2000).CrossRefADSGoogle Scholar
  36. 36.
    C. B. Moore, W. Rison, J. Mathis, and G. Aulich, J. Appl. Meteorol. 39, 593 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • N. L. Aleksandrov
    • 1
  • E. M. Bazelyan
    • 2
  • Yu. P. Raizer
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Krzhizhanovskii Rower Engineering InstituteMoscowRussia
  3. 3.Institute for Problems of MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations