Plasma Physics Reports

, Volume 31, Issue 1, pp 26–45 | Cite as

Localization of magnetized electrons in current filaments as a fundamental cause of Coulomb explosion

  • A. V. Gordeev
  • T. V. Losseva
Plasma Dynamics

Abstract

Mechanisms for generating current filaments in a dense plasma under the action of focused laser pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and nonzero electron vorticity Ωe=B−(c/e)×pe that originate at magnetic fields in the range 4πnemec2B2≪4πnimic2 are investigated under the conditions of Coulomb explosion at currents below the ion Alfvén current. A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal (Bz) and a purely azimuthal (Bθ) magnetic field and also in a more general case of a helical magnetic field, having two components, under conditions such that the charge separation occurs on a spatial scale on the order of the magnetic Debye radius rB ≃ |B|/(4πene. It is shown that strong electric fields generated in the current filaments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse ion plasma frequencies ωpi−1. The possible formation of current filaments on different spatiotemporal scales is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. H. Burnett and G. D. Enright, IEEE J. Quantum Electron. 26, 1797 (1990).CrossRefADSGoogle Scholar
  2. 2.
    A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).CrossRefADSGoogle Scholar
  3. 3.
    D. Umstadter, J. Phys. D 36, 151 (2003).CrossRefADSGoogle Scholar
  4. 4.
    D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).CrossRefADSGoogle Scholar
  5. 5.
    Yu. L. Bakshaev, P. I. Blinov, A. S. Chernenko, et al., in Proceedings of the International Conference on Research Application of Plasmas, Warsaw, 2001, Paper PS-22.Google Scholar
  6. 6.
    Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, et al., Fiz. Plazmy 27, 1101 (2001) [Plasma Phys. Rep. 27, 1039 (2001)].Google Scholar
  7. 7.
    G. V. Ivanenkov, S. A. Pikuz, D. B. Sinars, et al., Fiz. Plazmy 26, 927 (2000) [Plasma Phys. Rep. 26, 868 (2000)].Google Scholar
  8. 8.
    T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).CrossRefADSGoogle Scholar
  9. 9.
    S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Phys. Rev. Lett. 89, 035003 (2002).Google Scholar
  10. 10.
    T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, et al., Phys. Plasmas 9, 2165 (2002).CrossRefADSGoogle Scholar
  11. 11.
    S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 571 (2002) [JETP Lett. 76, 490 (2002)].Google Scholar
  12. 12.
    G. V. Ivanenkov and V. Stepniewski, Fiz. Plazmy 28, 499 (2002) [Plasma Phys. Rep. 28, 457 (2002)].Google Scholar
  13. 13.
    J. Stamper, Science 281, 1469 (1998).Google Scholar
  14. 14.
    A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 29, 809 (2003) [Plasma Phys. Rep. 29, 748 (2003)].Google Scholar
  15. 15.
    F. N. Beg, E. L. Clark, M. S. Wei, et al., Phys. Rev. Lett. 92, 095001 (2004).Google Scholar
  16. 16.
    A. V. Gordeev and T. V. Losseva, in Proceedings of the 14th International Conference on High-Power Particle Beams and the 5th International Conference on Dense Z-Pinches, Albuquerque, NM, 2002, Book of Abstracts, p. 259; AIP Conf. Proc. 651, 420 (2002).Google Scholar
  17. 17.
    E. W. Weibel, Phys. Rev. Lett. 2, 83 (1959).CrossRefADSGoogle Scholar
  18. 18.
    J. Sakai, S. Saito, H. Mae, et al., Phys. Plasmas 9, 2959 (2002).CrossRefADSGoogle Scholar
  19. 19.
    A. V. Gordeev and S. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 67, 461 (1998) [JETP Lett. 67, 482 (1998)].Google Scholar
  20. 20.
    A. V. Gordeev and T. V. Losseva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 669 (1999) [JETP Lett. 70, 684 (1999)].Google Scholar
  21. 21.
    A. V. Gordeev, Fiz. Plazmy 27, 251 (2001) [Plasma Phys. Rep. 27, 235 (2001)].MathSciNetGoogle Scholar
  22. 22.
    F. C. Young, S. J. Stephanakis, and G. Mosher, J. Appl. Phys. 48, 3642 (1977).ADSGoogle Scholar
  23. 23.
    G. S. Sarkisov, V. Yu. Bychenkov, V. T. Tikhonchuk, et al., Pis’ma Zh. Éksp. Teor. Fiz. 66, 787 (1997) [JETP Lett. 66, 828 (1997)].Google Scholar
  24. 24.
    G. A. Askar’yan, S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, Pis’ma Zh. Éksp. Teor. Fiz. 60, 240 (1994) [JETP Lett. 60, 251 (1994)].Google Scholar
  25. 25.
    S. V. Bulanov, M. Lontano, T. Zh. Esirkepov, et al., Phys. Rev. Lett. 76, 3562 (1996).CrossRefADSGoogle Scholar
  26. 26.
    Y. Yatsuyanagi, T. Ebisuzaki, T. Hatori, and T. Kato, Phys. Plasmas 9, 446 (2002).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Y. Kazimura, J.-I. Sakai, and S. V. Bulanov, Fiz. Plazmy 27, 350 (2001) [Plasma Phys. Rep. 27, 330 (2001)].Google Scholar
  28. 28.
    F. Califano, F. Praudi, F. Pegoraro, and S. V. Bulanov, Phys. Rev. E 58, 7837 (1998).ADSGoogle Scholar
  29. 29.
    F. Califano, F. Pegoraro, and S. V. Bulanov, Phys. Rev. Lett. 84, 3602 (2000).CrossRefADSGoogle Scholar
  30. 30.
    F. Califano, N. Attico, F. Pegoraro, et al., Phys. Rev. Lett. 86, 5293 (2001).CrossRefADSGoogle Scholar
  31. 31.
    O. Buneman, Proc. R. Soc. London, Ser. A 215, 346 (1952).ADSMATHMathSciNetGoogle Scholar
  32. 32.
    A. V. Gordeev and S. V. Levchenko, Electromagn. Waves Electron. Syst. 3(2–3), 25 (1998).Google Scholar
  33. 33.
    A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 26, 1030 (2000) [Plasma Phys. Rep. 26, 965 (2000)].Google Scholar
  34. 34.
    H. Alfven, Phys. Rev. 55, 425 (1939).ADSMATHGoogle Scholar
  35. 35.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).Google Scholar
  36. 36.
    I. E. Tamm, The Principles of Electricity Theory (GITTL, Moscow, 1976).Google Scholar
  37. 37.
    A. V. Gordeev, Fiz. Plazmy 27, 815 (2001) [Plasma Phys. Rep. 27, 769 (2001)].Google Scholar
  38. 38.
    V. I. Berezhiani, S. M. Mahajan, and N. L. Shatashvili, Phys. Rev. E 55, 995 (1997).CrossRefADSGoogle Scholar
  39. 39.
    V. P. Krainov, J. Phys. B 36, 3187 (2003).CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    V. P. Krainov, Zh. Éksp. Teor. Fiz. 123, 487 (2003) [JETP 96, 430 (2003)].Google Scholar
  41. 41.
    A. V. Gordeev and S. V. Levchenko, in Proceedings of the 18th Symposium on Plasma Physics Technology, Prague, 1997, p. 74.Google Scholar
  42. 42.
    M. Borghesi, A. J. Mackinnon, A. R. Bell, et al., Phys. Rev. Lett. 81, 112 (1998).ADSGoogle Scholar
  43. 43.
    K. Krushelnick, A. Ting, C. I. Moore, et al., Phys. Rev. Lett. 78, 4047 (1997).CrossRefADSGoogle Scholar
  44. 44.
    E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).CrossRefGoogle Scholar
  45. 45.
    V. S. Belyaev, O. F. Kostenko, and V. S. Lisitsa, Pis’ma Zh. Éksp. Teor. Fiz. 77, 784 (2003) [JETP Lett. 77, 653 (2003)].Google Scholar
  46. 46.
    D. Pesme, W. Rozmus, V. T. Tikhonchuk, et al., Phys. Rev. Lett. 84, 278 (2000).CrossRefADSGoogle Scholar
  47. 47.
    G. S. Sarkisov, V. Yu. Bychenkov, and V. T. Tikhonchuk, Pis’ma Zh. Éksp. Teor. Fiz. 69, 20 (1999) [JETP Lett. 69, 20 (1999)].Google Scholar
  48. 48.
    S. V. Bulanov, F. Kalifano, G. I. Dudnikova, et al., in Review of Plasma Physics, Ed. by V. D. Shafranov (Kluwer Academic, New York, 2001), Vol. 22, p. 227.Google Scholar
  49. 49.
    R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4.Google Scholar
  50. 50.
    A. V. Gordeev, Fiz. Plazmy 23, 108 (1997) [Plasma Phys. Rep. 23, 92 (1997)].Google Scholar
  51. 51.
    A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. 243, 215 (1994).CrossRefADSGoogle Scholar
  52. 52.
    R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.Google Scholar
  53. 53.
    V. V. Krasnosel’skikh, Zh. Éksp. Teor. Fiz. 89, 498 (1985) [Sov. Phys. JETP 62, 282 (1985)].ADSGoogle Scholar
  54. 54.
    K. Krushelnick, E. L. Clark, Z. Najmudin, et al., Phys. Rev. Lett. 83, 737 (1999).CrossRefADSGoogle Scholar
  55. 55.
    C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).Google Scholar
  56. 56.
    E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987; Mir, Moscow, 1990).Google Scholar
  57. 57.
    A. V. Gordeev, Fiz. Plazmy 27, 700 (2001) [Plasma Phys. Rep. 27, 659 (2001)].Google Scholar
  58. 58.
    Y. Sentoku, T. V. Liseikina, T. Zh. Esirkepov, et al., Phys. Rev. E 62, 7271 (2000).CrossRefADSGoogle Scholar
  59. 59.
    A. V. Gordeev and T. V. Losseva, in Book of Abstracts of 10th International Conference and School on Plasma Physics and Controlled Fusion, Alushta, 2004, p. 102.Google Scholar
  60. 60.
    P. M. Banks and G. Kockarts, Aeronomy (Academic, New York, 1973).Google Scholar
  61. 61.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC, Boca Raton, 1997).Google Scholar
  62. 62.
    T. Z. Esirkepov, Y. Sentoku, K. Mima, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70, 80 (1999) [JETP Lett. 70, 82 (1999)].Google Scholar
  63. 63.
    G. S. Sarkisov, V. Yu. Bychenkov, V. N. Novikov, et al., Phys. Rev. E 59, 7042 (1999).CrossRefADSGoogle Scholar
  64. 64.
    G. Pretzler, A. Saeman, A. Pukhov, et al., Phys. Rev. E 58, 1165 (1998).CrossRefADSGoogle Scholar
  65. 65.
    J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev. Lett. 84, 2634 (2000).CrossRefADSGoogle Scholar
  66. 66.
    V. Yu. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokonnikov, Zh. Éksp. Teor. Fiz. 115, 2080 (1999) [JETP 88, 1137 (1999)].Google Scholar
  67. 67.
    V. Yu. Bychenkov, Y. Sentoku, S. V. Bulanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 664 (2001) [JETP Lett. 74, 586 (2001)].Google Scholar
  68. 68.
    A. V. Gordeev and T. V. Losseva, in Proceedings of the 13th International Conference on High-Power Particle Beams, Nagaoka, 2000, Vol. II, p. 968.Google Scholar
  69. 69.
    G. V. Sholin and E. O. Baronova, in Book of Abstracts of 1st All-Russia Seminar on Z-Pinches, Moscow, 2004, p. 40.Google Scholar
  70. 70.
    Y. Kazimura, J.-I. Sakai, and S. V. Bulanov, J. Phys. Soc. Jpn. 68, 3271 (1999).CrossRefGoogle Scholar
  71. 71.
    M. Honda, J. Meyer-ter-Vehn, and A. M. Pukhov, Phys. Plasmas 7, 1302 (2000).ADSGoogle Scholar
  72. 72.
    M. Honda, J. Meyer-ter-Vehn, and A. M. Pukhov, Phys. Rev. Lett. 85, 2128 (2000).CrossRefADSGoogle Scholar
  73. 73.
    S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 581 (2001).CrossRefADSGoogle Scholar
  74. 74.
    A. Maksimchuk, K. Flippo, H. Krause, et al., Fiz. Plazmy 30, 514 (2004) [Plasma Phys. Rep. 30, 473 (2004)].Google Scholar
  75. 75.
    U. Wagner, M. Tatarakis, A. Gopal, et al., Phys. Rev. E 70, 026401 (2004).Google Scholar
  76. 76.
    A. A. Frolov, Fiz. Plazmy 30, 750 (2004) [Plasma Phys. Rep. 30, 698 (2004)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. V. Gordeev
    • 1
  • T. V. Losseva
    • 2
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia

Personalised recommendations