Advertisement

Semiconductors

, Volume 39, Issue 1, pp 127–131 | Cite as

Resonant Raman scattering and atomic force microscopy of InGaAs/GaAs multilayer nanostructures with quantum dots

  • M. Ya. Valakh
  • V. V. Strelchuk
  • A. F. Kolomys
  • Yu. I. Mazur
  • Z. M. Wang
  • M. Xiao
  • G. J. Salamo
Amorphous, Vitreous, and Porous Semiconductors

Abstract

The transition from two-dimensional (2D) pseudomorphic growth to the three-dimensional (3D) (nanoisland) growth in InxGa1−xAs/GaAs multilayer structures grown by molecular-beam epitaxy was investigated by atomic force microscopy, photoluminescence, and Raman scattering. The nominal In content x in InxGa1−xAs was varied from 0.20 to 0.50. The thicknesses of the deposited InxGa1−xAs and GaAs layers were 14 and 70 monolayers, respectively. It is shown that, at these thicknesses, the 2D-3D transition occurs at x ≥ 0.27. It is ascertained that the formation of quantum dots (nanoislands) does not follow the classical Stranski-Krastanov mechanism but is significantly modified by the processes of vertical segregation of In atoms and interdiffusion of Ga atoms. As a result, the InxGa1−xAs layer can be modeled by a 2D layer with a low In content (x < 0.20), which undergoes a transition into a thin layer containing nanoislands enriched with In (x > 0.60). For multilayer InxGa1−xAs structures, lateral alignment of quantum dots into chains oriented along the \([\overline 1 10]\) direction can be implemented and the homogeneity of the sizes of quantum dots can be improved.

Keywords

Microscopy GaAs Atomic Force Microscopy Thin Layer Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rosenauer, D. Gerthsen, D. Van Dyck, et al., Phys. Rev. B 64, 245334 (2001); I. Kegel, T. H. Metzger, A. Lorke, et al., Phys. Rev. B 63, 035318 (2001); T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, Phys. Rev. Lett. 86, 2381 (2001); N. Liu, J. Tersoff, O. Baklenov, et al., Phys. Rev. Lett. 84, 334 (2000).Google Scholar
  2. 2.
    C. Teichert, L. J. Peticolas, J. C. Bean, et al., Phys. Rev. B 53, 16334 (1996).Google Scholar
  3. 3.
    G. S. Salamon, S. Komarov, J. S. Hariss, and Y. Yamamoto, J. Cryst. Growth 175–176, 707 (1997).Google Scholar
  4. 4.
    Q. Xie, A. Madhukar, P. Chen, and N. Kabayashi, Phys. Rev. Lett. 75, 2542 (1995).CrossRefADSGoogle Scholar
  5. 5.
    S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).CrossRefADSGoogle Scholar
  6. 6.
    G. S. Salamon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. 76, 952 (1996).ADSGoogle Scholar
  7. 7.
    Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. I. Salamo, Appl. Phys. Lett. 84, 1931 (2004).ADSGoogle Scholar
  8. 8.
    H. Wen, Z. M. Wang, and G. I. Salamo, Appl. Phys. Lett. 84, 1756 (2004).ADSGoogle Scholar
  9. 9.
    H. Li, Q. Zhuang, Z. Wang, and T. Daniels-Race, J. Appl. Phys. 87(1), 188 (2000).ADSGoogle Scholar
  10. 10.
    T. P. Persall, R. Carles, and J. L. Portal, Appl. Phys. Lett. 42, 436 (1983).ADSGoogle Scholar
  11. 11.
    Yu. A. Pusep, G. Zanelatto, S. W. Da Silva, et al., Phys. Rev. B 58, R1770 (1998).Google Scholar
  12. 12.
    G. Landa, R. Carles, and I. B. Runucci, Solid State Commun. 86, 351 (1993).CrossRefGoogle Scholar
  13. 13.
    V. V. Strel’chuk, V. P. Klad’ko, M. Ya. Valakh, et al., Nanosist. Nanomater. Nanotekhnol. 1(1), 309 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • M. Ya. Valakh
    • 1
  • V. V. Strelchuk
    • 1
  • A. F. Kolomys
    • 1
  • Yu. I. Mazur
    • 2
  • Z. M. Wang
    • 2
  • M. Xiao
    • 2
  • G. J. Salamo
    • 2
  1. 1.Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Department of PhysicsUniversity of ArkansasArkansasUSA

Personalised recommendations