, Volume 39, Issue 1, pp 113–118 | Cite as

Terahertz oscillator based on nonlinear frequency conversion in a double vertical cavity

  • Yu. A. Morozov
  • I. S. Nefedov
  • V. Ya. Aleshkin
  • I. V. Krasnikova
Low-Dimensional Systems


The feasibility of producing a vertical-cavity laser that operates in the far IR region and is based on the three-wave mixing due to the lattice nonlinearity of a GaAs/AlGaAs system is analyzed. It is shown that the use of a double Bragg cavity with the parameters tuned both to high-frequency oscillations (sources of nonlinear polarization) and to the difference frequency allows one to raise the intensity of the radiation in the far IR region. The power density of the radiation at a wavelength of 49.5 μm equals approximately 5 × 10−4 μW/μm2 at a drive current density of 5 kA/cm2. It is suggested that a drive current should be supplied with the use of intercavity contacts, to be located in the vicinity of a node in the difference mode; then, the absorption of radiation by free charge carriers will be reduced to a minimum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Beck, D. Hofstetter, T. Aellen, et al., Science 295, 301 (2002).CrossRefADSGoogle Scholar
  2. 2.
    O. Levi, T. Pinguet, T. Skauli, et al., Opt. Lett. 27, 2091 (2002).ADSGoogle Scholar
  3. 3.
    V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1256 (2001) [Semiconductors 35, 1203 (2001)].Google Scholar
  4. 4.
    A. A. Belyanin, D. Deppe, V. V. Kocharovskii, et al., Usp. Fiz. Nauk 173, 1015 (2003) [Phys. Usp. 46, 986 (2003)].Google Scholar
  5. 5.
    Yu. A. Morozov, I. S. Nefedov, and V. Ya. Aleshkin, Zh. Tekh. Fiz. 74(5), 71 (2004) [Tech. Phys. 49, 592 (2004)].Google Scholar
  6. 6.
    Yu. A. Morozov, I. S. Nefedov, and V. Ya. Aleshkin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1392 (2004) [Semiconductors 38, 1350 (2004)].Google Scholar
  7. 7.
    Y. Kaneko, S. Nakagawa, Y. Ichimura, et al., J. Appl. Phys. 87, 1597 (2000).CrossRefADSGoogle Scholar
  8. 8.
    M. Rochat, L. Ajili, H. Willenberg, et al., Appl. Phys. Lett. 81, 1381 (2002).CrossRefADSGoogle Scholar
  9. 9.
    T. Dekorsy, M. Helm, V. Yakovlev, et al., Phys. Rev. Lett. 90, 055508 (2003).Google Scholar
  10. 10.
    A. Mayer and F. Keilmann, Phys. Rev. B 33, 6954 (1986).ADSGoogle Scholar
  11. 11.
    J. Blakemore, J. Appl. Phys. 53, R123 (1982).CrossRefADSGoogle Scholar
  12. 12.
    A. S. Il’inskii and G. Ya. Slepyan, Oscillations and Waves in Electrodynamical Systems with Losses (Mosk. Gos. Univ., Moscow, 1983) [in Russian].Google Scholar
  13. 13.
    S. Adachi, J. Appl. Phys. 58, R1 (1985).CrossRefADSGoogle Scholar
  14. 14.
    W. Songprakob, R. Zallen, D. Tsu, and W. Liu, J. Appl. Phys. 91, 171 (2002).CrossRefADSGoogle Scholar
  15. 15.
    W. Songprakob, R. Zallen, W. Liu, and K. Bacher, Phys. Rev. B 62, 4501 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Yu. A. Morozov
    • 1
  • I. S. Nefedov
    • 1
  • V. Ya. Aleshkin
    • 2
  • I. V. Krasnikova
    • 3
  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesSaratovRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia
  3. 3.Saratov State Technical UniversitySaratovRussia

Personalised recommendations