Electronic, structural, and thermal properties of a nanocable consisting of carbon and BN nanotubes

  • A. N. Enyashin
  • G. Seifert
  • A. L. Ivanovskii
Condensed Matter

Abstract

The band structure and thermal behavior of a coaxial C/BN nanocable (5,5)C@(17,0)BN consisting of a carbon nanotube and a boron nitride nanotube have been studied using a tight-binding approximation based on density functional theory. The system is stable up to T∼3500–3700 K. As the temperature increases, deformations of the BN tube begin earlier than those of the carbon tube. The near-Fermi states of the nanocable are formed by the overlapping π-π* bands of the carbon tube, and the outer BN nanotube (the nanocable sheath) is an insulator with a bandgap of ∼4 eV. The electronic properties of the nanocable (the metallic-type conductivity of the C tube and the insulating character of the BN tube) are retained over the entire temperature interval.

PACS numbers

61.46.+w 73.22.+i 85.35.Kt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991).CrossRefADSGoogle Scholar
  2. 2.
    K. Tanaka, T. Yamabe, and K. Fuku, The Science and Technology of Carbon Nanotubes (Elsevier, Oxford, 1999).Google Scholar
  3. 3.
    P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge Univ. Press, Cambridge, 1999).Google Scholar
  4. 4.
    M. Endo, T. Hayashi, H. Muramatsu, et al., Nano Lett. 4, 1451 (2004).CrossRefGoogle Scholar
  5. 5.
    R. Tenne, Prog. Inorg. Chem. 50, 269 (2001).Google Scholar
  6. 6.
    A. L. Ivanovskii, Usp. Khim. 71, 203 (2002).Google Scholar
  7. 7.
    A. Rubio, Y. Miyamoto, X. Blasé, et al., Phys. Rev. B 53, 4023 (1996).CrossRefADSGoogle Scholar
  8. 8.
    D. Golberg, F. F. Xu, and Y. Bando, Appl. Phys. A 76, 479 (2003).ADSGoogle Scholar
  9. 9.
    D. Golberg, P. S. Dorozhkin, Y. Bando, et al., Appl. Phys. Lett. 82, 1275 (2003).CrossRefADSGoogle Scholar
  10. 10.
    W. Mickelson, S. Aloni, W.-Q. Han, et al., Science 300, 467 (2003).CrossRefADSGoogle Scholar
  11. 11.
    D. Porezag, Th. Frauenheim, Th. Kohler, et al., Phys. Rev. B 51, 12947 (1995).Google Scholar
  12. 12.
    A. M. Koster, G. Geudtner, A. Goursot, et al., National Research Council, Canada (2002).Google Scholar
  13. 13.
    E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).ADSGoogle Scholar
  14. 14.
    B. Akdim, R. Pachter, X. Duan, and W. W. Adams, Phys. Rev. B 67, 245404 (2003).Google Scholar
  15. 15.
    W. H. Moon and H. J. Hwang, Nanotechnology 15, 431 (2004).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • A. N. Enyashin
    • 1
    • 2
  • G. Seifert
    • 1
  • A. L. Ivanovskii
    • 2
  1. 1.Institut für Physikalische ChemieTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Solid-State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations