Controlling potential traps for filtering solitons in Bose-Einstein condensates

  • R. Fedele
  • P. K. Shukla
  • S. De Nicola
  • M. A. Man’ko
  • V. I. Man’ko
  • F. S. Cataliotti
Condensed Matter

Abstract

We present a controlling potential method for solving the three-dimensional Gross-Pitaevskii equation (GPE), which governs the nonlinear dynamics of the Bose-Einstein condensates (BECs) in an inhomogeneous potential trap. Our method allows one to construct ground and excited matter wave states whose longitudinal profiles can have bright solitons. This method provides the confining potential that filters and controls localized BECs. Moreover, it is predicted that, while the BEC longitudinal soliton profile is controlled and kept unchanged, the transverse profile may exhibit oscillatory breathers (the unmatched case) or move as a rigid body in the form of either coherent states (performing the Lissajous figures) or a Schrödinger cat state (matched case).

PACS numbers

03.65.Ge 03.75.Lm 05.30.Jp 05.45.Yv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Gross, Nuovo Cimento 20, 454 (1961); L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).MATHGoogle Scholar
  2. 2.
    F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).CrossRefADSGoogle Scholar
  3. 3.
    S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999); E. A. Donley et al., Nature 412, 295 (2001); B. P. Anderson et al., Phys. Rev. Lett. 86, 2926 (2001); L. Khayakovich et al., Science 296, 1290 (2002); B. Eiermann et al., Phys. Rev. Lett. 92, 230401 (2004).CrossRefADSGoogle Scholar
  4. 4.
    J. Forthàgh et al., Phys. Rev. Lett. 81, 5310 (1998); J. Reichel, Appl. Phys. B 74, 469 (2002); R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002).ADSGoogle Scholar
  5. 5.
    R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95 (2000).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • R. Fedele
    • 1
  • P. K. Shukla
    • 2
  • S. De Nicola
    • 1
  • M. A. Man’ko
    • 3
  • V. I. Man’ko
    • 1
  • F. S. Cataliotti
    • 4
  1. 1.Dipartimento di Scienze Fisiche and INFNUniversità Federico II di NapoliNapoliItaly
  2. 2.Ruhr-Universitat BochumGermany
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.University of CataniaItaly

Personalised recommendations