Advertisement

Journal of Experimental and Theoretical Physics

, Volume 99, Issue 5, pp 1090–1107 | Cite as

Symmetry-breaking solutions of the Ginzburg-Landau equation

  • Yu. N. Ovchinnikov
  • I. M. Sigal
Solids Electronic Properties

Abstract

We consider the question of the existence of nonradial solutions of the Ginzburg-Landau equation. We present results indicating that such solutions exist. We seek such solutions as saddle points of the renormalized Ginzburg-Landau free-energy functional. There are two main points in our analysis: searching for solutions that have certain point symmetries and characterizing saddle-point solutions in terms of critical points of certain intervortex energy function. The latter critical points correspond to forceless vortex configurations.

Keywords

Spectroscopy Vortex State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bethuel, H. Brezis, and F. Hélein, Calc. Variat. PDE 1, 123 (1993).Google Scholar
  2. 2.
    F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau Vortices (Birkhäuser, Basel, 1994).Google Scholar
  3. 3.
    F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg-Landau Model (Birkhäuser, Boston, 2000), Progress in Nonlinear Differential Equations and Their Applications, Vol. 39.Google Scholar
  4. 4.
    Yu. N. Ovchinnikov and I. M. Sigal, Physica A (Amsterdam) 261, 143 (1998).Google Scholar
  5. 5.
    T. Rivière, Manuscr. Math. 108, 217 (2002).MATHGoogle Scholar
  6. 6.
    F. Dalfovo, S. Giogini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).CrossRefADSGoogle Scholar
  7. 7.
    A. L. Fetter and A. A. Svidzinsky, cond-mat/0102003 (2001).Google Scholar
  8. 8.
    V. L. Ginzburg and L. Pitaevskii, Sov. Phys. JETP 7, 585 (1958).MathSciNetGoogle Scholar
  9. 9.
    P. Hagan, SIAM J. Appl. Math. 42, 762 (1982).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    M. Hervé and R. Hervé, Ann. Inst. Henri Poincaré Anal. Nonlin. 11, 427 (1994).Google Scholar
  11. 11.
    Y. Chen, C. Elliot, and T. Qui, Proc. R. Soc. Edinburgh, Sect. A 124, 1068 (1994).Google Scholar
  12. 12.
    P. Fife and L. A. Peletier, Quart. Appl. Math. 54, 85 (1996).MathSciNetGoogle Scholar
  13. 13.
    Yu. N. Ovchinnikov and I. M. Sigal, CRM Proc. Res. Notes 12, 199 (1997).MathSciNetGoogle Scholar
  14. 14.
    S. Chanillo and M. K.-H. Kiessling, C. R. Acad. Sci. Paris, Ser. I: Math. 321, 1023 (1995).MathSciNetGoogle Scholar
  15. 15.
    P. Mironescu, J. Funct. Anal. 130, 334 (1995).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    P. Mironescu, C. R. Acad. Sci. Paris, Ser. I: Math. 323, 593 (1996).MATHMathSciNetGoogle Scholar
  17. 17.
    E. Lieb and M. Loss, Math. Res. Lett. 1, 701 (1994).MathSciNetGoogle Scholar
  18. 18.
    Yu. N. Ovchinnikov and I. M. Sigal, Eur. J. Appl. Math. 13, 153 (2002).CrossRefMathSciNetGoogle Scholar
  19. 19.
    I. Shafrir, C. R. Acad. Sci. Paris, Ser. I: Math. 318, 327 (1994).MATHMathSciNetGoogle Scholar
  20. 20.
    Yu. N. Ovchinnikov and I. M. Sigal, Rev. Math. Phys. 12, 287 (2000).CrossRefMathSciNetGoogle Scholar
  21. 21.
    Yu. N. Ovchinnikov and I. M. Sigal, Nonlinearity 11, 1277 (1998).ADSMathSciNetGoogle Scholar
  22. 22.
    H. Brezis, F. Merle, and T. Rivière, Arch. Ration. Mech. Anal. 126, 35 (1994).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • Yu. N. Ovchinnikov
    • 1
    • 2
  • I. M. Sigal
    • 3
    • 4
  1. 1.Landau InstituteMoscowRussia
  2. 2.Max-Planck-Institute for Physics of Complex SystemsDresdenGermany
  3. 3.University of TorontoCanada
  4. 4.University of Notre DameUSA

Personalised recommendations