Journal of Experimental and Theoretical Physics

, Volume 99, Issue 5, pp 942–946 | Cite as

Optical rectification effect in nanostructured carbon films

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • Yu. P. Svirko
Atoms, Spectra, Radiation


Electrically conducting nanostructured carbon films obtained by chemical vapor deposition and composed of nanodimensional graphite crystals exhibit the effect of optical rectification on exposure to nanosecond pulsed laser radiation. Experiments show that the amplitude and polarity of the pulsed voltage strongly depend on the angle of incidence and polarization of the laser radiation and on the spatial orientation of a carbon film with electrodes relative to the laser beam. Under the optimum conditions corresponding to maximum amplitude of the response signal, the factor of conversion of the laser pulse power into electric voltage was about 500 and 650 mV/MW at a laser wavelength of 1064 and 532 nm, respectively.


Laser Pulse Laser Radiation Chemical Vapor Deposition Vapor Deposition Response Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bass, P. A. Franken, J. F. Ward, and G. Weinereich, Phys. Rev. Lett. 9, 446 (1962).CrossRefADSGoogle Scholar
  2. 2.
    J. F. Ward, Phys. Rev. 143, 569 (1966).CrossRefADSGoogle Scholar
  3. 3.
    B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Élektron. (Moscow) 7, 5 (1980).Google Scholar
  4. 4.
    M. C. Nuss and J. Orenstein, in Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, 1998), p. 7.Google Scholar
  5. 5.
    J. L. W. Siders, S. A. Trugman, F. H. Garzon, et al., Phys. Rev. B 61, 13633 (2000).Google Scholar
  6. 6.
    Vl. Margulis, E. A. Gaiduk, and E. N. Zhidkin, Opt. Commun. 183, 317 (2000).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Zolotukhin, A. N. Obraztsov, A. O. Ustinov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 124, 1291 (2003) [JETP 97, 1154 (2003)].Google Scholar
  8. 8.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
  9. 9.
    A. N. Obraztsov, I. Yu. Pavlovsky, A. P. Volkov, et al., Diamond Relat. Mater. 8, 814 (1999).Google Scholar
  10. 10.
    G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992).Google Scholar
  11. 11.
    G. M. Mikheev, T. N. Mogileva, A. Yu. Popov, and D. G. Kalyuzhnyi, Prib. Tekh. Éksp., No. 2, 101 (2003) [Instrum. Exp. Tech. 46, 233 (2003)].Google Scholar
  12. 12.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 125, 548 (2004) [JETP 98, 483 (2004)].Google Scholar
  13. 13.
    Optical Properties of Semiconductors (Handbook), Ed. by V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko (Naukova Dumka, Kiev, 1987), p. 69 [in Russian].Google Scholar
  14. 14.
    A. N. Obraztsov, A. P. Volkov, I. Yu. Pavlovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 381 (1999) [JETP Lett. 69, 411 (1999)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • R. G. Zonov
    • 1
  • A. N. Obraztsov
    • 2
  • Yu. P. Svirko
    • 3
  1. 1.Institute of Applied Mechanics, Ural DivisionRussian Academy of SciencesIzhevsk, UdmurtiaRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsJoensuu UniversityJoensuuFinland

Personalised recommendations