Advertisement

Landau-Zener problem for energies close to potential crossing points

  • V. A. Benderskii
  • E. V. Vetoshkin
  • E. I. Kats
Methods of Theoretical Physics

Abstract

We examine a previously overlooked aspect of the well-known Landau-Zener (LZ) problem, namely, the behavior in the intermediate, i.e., close to a crossing point, energy region, when all four LZ states are coupled and should be taken into account. We calculate the 4×4 connection matrix in this intermediate energy region, possessing the same block structure as the known connection matrices for the tunneling and in the over-barrier regions of the energy and continuously matching those in the corresponding energy regions. Applications of the results may concern various systems of physics, chemistry, or biology, ranging from molecular magnets and glasses to Bose condensed atomic gases.

PACS numbers

05.45.−a 31.50.Gh 72.10.−d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 2nd ed. (Nauka, Moscow, 1963; Pergamon, New York, 1965).Google Scholar
  2. 2.
    C. Zhu, Y. Teranishi, and H. Nakamura, Adv. Chem. Phys. 117, 127 (2001).Google Scholar
  3. 3.
    V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, JETP 97, 232 (2003).CrossRefGoogle Scholar
  4. 4.
    A. M. Polyakov, Nucl. Phys. B 129, 429 (1977).ADSMathSciNetGoogle Scholar
  5. 5.
    S. Coleman, Aspects of Symmetry (Cambridge Univ. Press, Cambridge, 1985).Google Scholar
  6. 6.
    V. A. Benderskii, D. E. Makarov, and C. A. Wight, Chemical Dynamics at Low Temperatures (Wiley-Interscience, New York, 1994).Google Scholar
  7. 7.
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1965), Vols. 1–3.Google Scholar
  8. 8.
    V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, JETP 95, 645 (2002).CrossRefGoogle Scholar
  9. 9.
    V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, Phys. Rev. A 69, 062508 (2004).Google Scholar
  10. 10.
    M. V. Fedoryuk, Proc. Russ. Acad. Sci. 158, 540 (1964).MATHGoogle Scholar
  11. 11.
    M. V. Fedoryuk, Proc. Russ. Acad. Sci. 162, 287 (1965).MATHGoogle Scholar
  12. 12.
    M. V. Fedoryuk, Russ. Math. Survey 21, 1 (1966).MATHGoogle Scholar
  13. 13.
    J. Heading, An Introduction to Phase-Integral Methods (Wiley-Interscience, London, 1962; Mir, Moscow, 1965).Google Scholar
  14. 14.
    F. W. J. Olver, J. Res. Natl. Bur. Stand., Sect. B 63, 131 (1959).MATHMathSciNetGoogle Scholar
  15. 15.
    F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974; Nauka, Moscow, 1990).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • V. A. Benderskii
    • 1
    • 3
  • E. V. Vetoshkin
    • 1
  • E. I. Kats
    • 2
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Laue-Langevin InstituteGrenobleFrance
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations