Physics of Atomic Nuclei

, Volume 67, Issue 11, pp 2044–2049 | Cite as

Astroparticle physics with AMS-02

  • A. G. Malinin
Rare Processes and Astrophysics


The main physics goals of the AMS-02 experiment in the astroparticle domain are searches for antimatter and dark matter. The discovery potential of primordial antimatter by AMS-02 is presented, emphasizing the completeness of the AMS-02 detector for these searches. Meanwhile, antiproton detection suffers from a large secondary interaction background; the anti-4He or anti-3He signal would allow one to probe the Universe for existence of antimatter. The expected signal in AMS-02 is presented and compared to results from present experiments. The e+ and antiproton channels will contribute to the dark matter detection studies. A SUSY neutralino candidate is considered. The expected flux sensitivities in a three-year exposure for the e+/e ratio and antiproton yields as a function of energy are presented and compared to other direct and indirect searches.


Present Experiment Elementary Particle Dark Matter Discovery Potential Expected Signal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Viertel and M. Capell, Nucl. Instrum. Methods Phys. Res. A 419, 295 (1998).CrossRefADSGoogle Scholar
  2. 2.
    J. Alcaraz et al., Nuovo Cimento A 112, 1325 (1999).ADSGoogle Scholar
  3. 3.
    D. Alvisi et al., Nucl. Instrum. Methods Phys. Res. A 437, 212 (1999).CrossRefADSGoogle Scholar
  4. 4.
    J. Alcaraz et al., Phys. Lett. B 461, 387 (2000).Google Scholar
  5. 5.
    J. Alcaraz et al., Phys. Lett. B 472, 215 (2000).ADSGoogle Scholar
  6. 6.
    J. Alcaraz et al., Phys. Lett. B 484, 10 (2000).ADSGoogle Scholar
  7. 7.
    J. Alcaraz et al., Phys. Lett. B 490, 27 (2000).ADSGoogle Scholar
  8. 8.
    G. F. Smoot et al., Phys. Rev. Lett. 35, 258 (1975).CrossRefADSGoogle Scholar
  9. 9.
    G. Steigman et al., Annu. Rev. Astron. Astrophys. 14, 339 (1976).CrossRefADSGoogle Scholar
  10. 10.
    G. Badhwar et al., Nature 274, 137 (1978).CrossRefADSGoogle Scholar
  11. 11.
    A. Buffington et al., Astrophys. J. 248, 1179 (1981).CrossRefADSGoogle Scholar
  12. 12.
    R. L. Golden et al., Astrophys. J. 479, 992 (1999).ADSGoogle Scholar
  13. 13.
    J. F. Ormes et al., Astrophys. J. Lett. 482, L187 (1997).CrossRefADSGoogle Scholar
  14. 14.
    T. Saeki et al., Phys. Lett. B 422, 319 (1998).ADSGoogle Scholar
  15. 15.
    E. A. Baltz et al., Phys. Rev. D 65, 063511 (2002).Google Scholar
  16. 16.
    I. V. Moskalenko and A. W. Strong, Adv. Space Res. 27, 717 (2001).ADSGoogle Scholar
  17. 17.
    T. K. Gaiser, T. Stanev, et al., Phys. Rev. D 54, 5578 (1996).ADSGoogle Scholar
  18. 18.
    R. Brun et al., GEANT3, CERN-DD/EE/84-1 (Revised 1987).Google Scholar
  19. 19.
    S. Agistinelli et al. (GEANT4 Collab.), Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSGoogle Scholar
  20. 20.
    V. Choutko, G. Lamanna, A. Malinin, and E. S. Seo, Int. J. Mod. Phys. A 17, 1817 (2002).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • A. G. Malinin
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandUSA

Personalised recommendations