Advertisement

Quantum phase transition for the BEC-BCS crossover in condensed matter physics and CPT violation in elementary particle physics

  • F. R. Klinkhamer
  • G. E. Volovik
Condensed Matter

Abstract

We discuss the quantum phase transition that separates a vacuum state with fully gapped fermion spectrum from a vacuum state with topologically protected Fermi points (gap nodes). In the context of condensed-matter physics, such a quantum phase transition with Fermi point splitting may occur for a system of ultracold fermionic atoms in the region of BEC-BCS crossover, provided Cooper pairing occurs in the non-s-wave channel. For elementary particle physics, the splitting of Fermi points may lead to CPT violation, neutrino oscillations, and other phenomena.

PACS numbers

11.30.Er 71.10.−w 73.43.Nq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Volovik and L. P. Gorkov, Sov. Phys. JETP 61, 843 (1985).Google Scholar
  2. 2.
    N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Google Scholar
  4. 4.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).Google Scholar
  5. 5.
    C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004); cond-mat/0401554.Google Scholar
  6. 6.
    M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003); cond-mat/0311172.ADSGoogle Scholar
  7. 7.
    M. W. Zwierlein, C. A. Stan, C. H. Schunck, et al., Phys. Rev. Lett. 92, 120403 (2004); cond-mat/0403049.Google Scholar
  8. 8.
    J. Kinast, S. L. Hemmer, M. E. Gehm, et al., Phys. Rev. Lett. 92, 150402 (2004); cond-mat/0403540.Google Scholar
  9. 9.
    M. Bartenstein, A. Altmeyer, S. Riedl, et al., Phys. Rev. Lett. 92, 120401 (2004); cond-mat/0401109.Google Scholar
  10. 10.
    J. Zhang, E. G. M. van Kempen, T. Bourdel, et al., quantph/0406085.Google Scholar
  11. 11.
    C. H. Schunck, M. W. Zwierlein, C. A. Stan, et al., condmat/0407373.Google Scholar
  12. 12.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary Particle Theory, Ed. by N. Svartholm (Almqvist, Stockholm, 1968), p. 367; S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970); C. Bouchiat, J. Iliopoulos, and P. Meyer, Phys. Lett. B 38, 519 (1972); D. J. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972).CrossRefADSGoogle Scholar
  13. 13.
    F. R. Klinkhamer and G. E. Volovik, hep-th/0403037.Google Scholar
  14. 14.
    F. R. Klinkhamer, JETP Lett. 79, 451 (2004); hepph/0403285.CrossRefGoogle Scholar
  15. 15.
    F. R. Klinkhamer, hep-ph/0407200.Google Scholar
  16. 16.
    S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990).CrossRefADSGoogle Scholar
  17. 17.
    C. Adam and F. R. Klinkhamer, Nucl. Phys. B 607, 247 (2001); hep-ph/0101087.CrossRefADSGoogle Scholar
  18. 18.
    M. Perez-Victoria, J. High Energy Phys. 0104, 032 (2001); hep-th/0102021.Google Scholar
  19. 19.
    R. Lehnert, J. Math. Phys. 45, 3399 (2004); hepph/0401084.CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Stone and R. Roy, Phys. Rev. B 69, 184511 (2004); cond-mat/0308034.Google Scholar
  21. 21.
    G. E. Volovik and V. A. Konyshev, JETP Lett. 47, 250 (1988).ADSGoogle Scholar
  22. 22.
    M. Perez-Victoria, Phys. Rev. Lett. 83, 2518 (1999); hep-th/9905061.ADSGoogle Scholar
  23. 23.
    A. A. Andrianov, P. Giacconi, and R. Soldati, J. High Energy Phys. 0202, 030 (2002); hep-th/0110279.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • F. R. Klinkhamer
    • 1
  • G. E. Volovik
    • 2
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of Karlsruhe (TH)KarlsruheGermany
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations