Observation of stimulated raman scattering in CVD-diamond

  • A. A. Kaminskii
  • V. G. Ralchenko
  • V. I. Konov
Condensed Matter


We report the first experimental observation of a nonlinear laser effect, stimulated Raman scattering (SRS), in manmade diamond grown from the gaseous phase by the chemical vapor deposition (CVD) technique. Multiple Stokes and anti-Stokes generation in the visible and near-IR ranges was excited under nanosecond and picosecond pumping in a 350-μ-thick plate. All the registered Raman-induced lasing wavelengths were identified. We classify the CVD-diamond as a promising χ(3)-active material for Raman laser converters in a record wide spectral range.

PACS numbers

42.65.Dr 42.70.−a 81.05.Uw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Weber, Handbook of Lasers (CRC Press, Boca Raton, 2001).Google Scholar
  2. 2.
    A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, 1996).Google Scholar
  3. 3.
    Special issue of Opt. Mater. 11 (March) (1999), Ed. by T. T. Basiev and R. C. Powell.Google Scholar
  4. 4.
    G. A. Pasmanik, Laser Focus World 35, 137 (1999).Google Scholar
  5. 5.
    Handbook of Industrial Diamonds and Diamonds Films, Ed. by M. Prelas et al. (Marcel Dekker, New York, 1997).Google Scholar
  6. 6.
    V. G. Ralchenko, A. A. Smolin, V. I. Konov, et al., Diamond Relat. Mater. 6, 417 (1997).Google Scholar
  7. 7.
    S. V. Nistor, M. Stefan, V. Ralchenko, et al., J. Appl. Phys. 87, 8741 (2000).CrossRefADSGoogle Scholar
  8. 8.
    K. K. Lai, W. Schusslbauer, H. Silberbauer, et al., Phys. Rev. B 42, 5834 (1990).ADSGoogle Scholar
  9. 9.
    G. Eckhard, D. P. Bortfeld, and M. Geller, Appl. Phys. Lett. 3, 137 (1963).Google Scholar
  10. 10.
    A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, Phys. Rev. A 1, 628 (1970).CrossRefADSGoogle Scholar
  11. 11.
    R. Chiao and B. P. Stoicheff, Phys. Rev. Lett. 12, 290 (1964).ADSGoogle Scholar
  12. 12.
    V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushinskii, JETP Lett. 10, 416 (1969).Google Scholar
  13. 13.
    A. A. Kaminskii, J. Hulliger, H. Eichler, et al., Dokl. Phys. 44, 69 (1999).ADSGoogle Scholar
  14. 14.
    A. A. Kaminskii, L. Bohaty, P. Becker, et al., Phys. Status Solidi A 202(1) (2004).Google Scholar
  15. 15.
    A. S. Eremenko, S. N. Karpukhin, and A. I. Stepanov, Sov. J. Quantum Electron. 10, 113 (1986).Google Scholar
  16. 16.
    P. G. Zverev, J. T. Murreay, R. C. Powell, et al., Opt. Commun. 97, 59 (1993).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Kaminskii, Crystallogr. Rep. 48, 295 (2003).Google Scholar
  18. 18.
    A. A. Kaminskii, T. Kaino, T. Taima, et al., Jpn. J. Appl. Phys. 41, L603 (2002).CrossRefGoogle Scholar
  19. 19.
    A. A. Kaminskii, J. Hulliger, and H. J. Eichler, Phys. Status Solidi A 186, R19 (2001).ADSGoogle Scholar
  20. 20.
    A. A. Kaminskii, E. Haussuhl, J. Hulliger, et al., Phys. Status Solidi A 193, 167 (2002).ADSGoogle Scholar
  21. 21.
    S. A. Solin and A. K. Ramdas, Phys. Rev. B 1, 1687 (1970).CrossRefADSGoogle Scholar
  22. 22.
    T. T. Basiev, A. A. Sobol, P. G. Zverev, et al., Appl. Opt. 38, 594 (1999).ADSGoogle Scholar
  23. 23.
    W. Kaiser and M. Maier, in Laser Handbook, Ed. by F. T. Arecchi and E. O. Schulz-Dubois (North-Holland, Amsterdam, 1972), p. 1077; Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).Google Scholar
  24. 24.
    J. Isberg, J. Hammersberg, E. Johansson, et al., Science 297, 1670 (2002).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • A. A. Kaminskii
    • 1
  • V. G. Ralchenko
    • 2
  • V. I. Konov
    • 2
  1. 1.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Natural Sciences Center, Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations