Advertisement

A stable static universe?

  • C. Barceló
  • G. E. Volovik
Gravity, Astrophysics

Abstract

Starting from the assumption that general relativity might be an emergent phenomenon showing up at low energies from an underlying microscopic structure, we reanalyze the stability of a static closed universe filled with radiation. In this scenario, it is sensible to consider the effective general-relativistic configuration as in a thermal contact with an “environment” (the role of the environment can be played, for example, by a higher-dimensional bulk or by the trans-Planckian degrees of freedom). We calculate the free energy at a fixed temperature of this radiation-filled static configuration. Then, by looking at the free energy, we show that the static Einstein configuration is stable under the stated condition.

PACS numbers

04.20.EX 04.40.Nr 04.50.+h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, Sitzungberichte der Preussischen Akademie der Wissenschaften (1917), p. 142 [The Principle of Relativity (Dover, New York, 1952)].Google Scholar
  2. 2.
    A. S. Eddington, Mon. Not. R. Astron. Soc. 90, 668 (1930).ADSzbMATHGoogle Scholar
  3. 3.
    G. F. R. Ellis and R. Maartens, Class. Quantum Grav. 21, 223 (2004).ADSMathSciNetGoogle Scholar
  4. 4.
    J. D. Barrow, G. F. R. Ellis, R. Maartens, and C. G. Tsagas, Class. Quantum Grav. 20, L155 (2003).ADSMathSciNetGoogle Scholar
  5. 5.
    G. Lemaître, Mon. Not. R. Astron. Soc. 91, 490 (1931).ADSzbMATHGoogle Scholar
  6. 6.
    W. B. Bonnor, Mon. Not. R. Astron. Soc. 115, 310 (1954).ADSMathSciNetGoogle Scholar
  7. 7.
    E. R. Harrison, Rev. Mod. Phys. 39, 862 (1967).CrossRefADSGoogle Scholar
  8. 8.
    G. W. Gibbons, Nucl. Phys. B 292, 784 (1987).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, UK, 2003).Google Scholar
  10. 10.
    G. F. Schutz, Phys. Rev. D 2, 2762 (1970).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    G. E. Volovik and A. I. Zelnikov, Pis’ma Zh. Éksp. Teor. Fiz. 78, 1271 (2003) [JETP Lett. 78, 751 (2003)].Google Scholar
  12. 12.
    J. W. York, Phys. Rev. D 33, 2092 (1986).CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Y. V. Gusev and A. I. Zelnikov, Phys. Rev. D 59, 024 002 (1999).Google Scholar
  14. 14.
    M. B. Altaie and J. S. Dowker, Phys. Rev. D 18, 3557 (1978).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).CrossRefADSzbMATHGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • C. Barceló
    • 1
  • G. E. Volovik
    • 2
    • 3
  1. 1.Instituto de Astrofisica de AndalucíaGranadaSpain
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations