Advertisement

Physics of the Solid State

, Volume 46, Issue 10, pp 1836–1841 | Cite as

Investigation of the electronic structure and chemical bonding of lead hexacyanoferrate(III)

  • V. M. Zainullina
  • M. A. Korotin
  • L. G. Maksimova
Semiconductors and Dielectrics

Abstract

The electronic structure of lead hexacyanoferrate(III) is calculated by the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) method in the LSDA + U approximation. The influence of vacancies in the lead sublattice on the electronic spectrum, chemical bonding, and magnetic properties of the Pb1.5Fe(CN)6 phase is investigated. Analysis of the electronic spectrum shows that this compound is characterized by semiconductor conductivity. It is demonstrated that the semiconductor gap is associated with the charge ordering of iron(III) ions.

Keywords

Iron Spectroscopy State Physics Magnetic Property Chemical Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Polyakov, T. A. Denisova, L. G. Maksimova, N. A. Zhuravlev, and L. Yu. Buldakova, Zh. Neorg. Khim. 45(2), 334 (2000).Google Scholar
  2. 2.
    V. G. Zubkov, A. P. Tyutyunnik, I. F. Berger, L. G. Maksimova, T. A. Denisova, E. V. Polyakov, and I. G. Kuplun, Solid State Sci. 3(3), 361 (2001).CrossRefGoogle Scholar
  3. 3.
    I. V. Tanaeva, Chemistry of Ferrocyanides (Nauka, Moscow, 1971) [in Russian].Google Scholar
  4. 4.
    V. V. Pavlishchuk, Teor. Éksp. Khim. 33(6), 341 (1997).Google Scholar
  5. 5.
    Massaaki Ohba, Nobuo Fukita, and Hisashi Okawa, J. Chem. Soc., Dalton Trans., No. 10, 1733 (1997).Google Scholar
  6. 6.
    I. A. Koval’, K. B. Yatsimirskii, S. Trofimenko, and V. V. Pavlishchuk, Teor. Éksp. Khim. 34(6), 351 (1998).Google Scholar
  7. 7.
    M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaisserman, M. Seuleiman, C. Desplanches, A. Sculler, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Coord. Chem. Rev. 190–192, 1023 (1999).Google Scholar
  8. 8.
    T. Mallah, S. Thiebaut, M. Verdaguer, and P. Veillet, Science 262, 1554 (1993).ADSGoogle Scholar
  9. 9.
    M. V. Ryzhkov, T. A. Denisova, V. G. Zubkov, and L. G. Maksimova, Zh. Strukt. Khim. 41(6), 1123 (2000).Google Scholar
  10. 10.
    V. P. Zhukov, V. M. Zainullina, V. G. Zubkov, T. A. Denisova, and A. P. Tyutyunnik, Solid State Sci. 3(5), 539 (2001).CrossRefGoogle Scholar
  11. 11.
    V. M. Za\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)nullina, V. P. Zhukov, V. G. Zubkov, A. P. Tyutyunnik, L. G. Maksimova, and T. A. Denisova, Zh. Strukt. Khim. (in press).Google Scholar
  12. 12.
    A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52(8), R5467 (1995).Google Scholar
  13. 13.
    W. R. L. Lambrecht and O. K. Andersen, Phys. Rev. B 34(4), 2439 (1986); O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53 (27), 2571 (1984).CrossRefADSGoogle Scholar
  14. 14.
    P.-O. Löwdin, J. Chem. Phys. 19(11), 1396 (1951).MathSciNetGoogle Scholar
  15. 15.
    K. Terakura, T. Oguchi, A. R. Williams, and J. Kübler, Phys. Rev. B 30(8), 4734 (1984).CrossRefADSGoogle Scholar
  16. 16.
    M.-H. Whangbo and R. Hoffman, J. Am. Chem. Soc. 100, 6093 (1978).Google Scholar
  17. 17.
    S. Alvarez, Tables of Parameters for Extended Huckel Calculations (Univ. de Barcelona, Barcelona, 1989).Google Scholar
  18. 18.
    V. M. Za\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)nullina, V. G. Zubkov, A. P. Tyutyunnik, D. G. Kellerman, S. N. Shkerin, L. G. Maksimova, and T. A. Denisova, in Proceedings of XXI International Chugaev Conference on Coordination Chemistry (Kiev, 2003).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • V. M. Zainullina
    • 1
  • M. A. Korotin
    • 2
  • L. G. Maksimova
    • 1
  1. 1.Institute of Solid-State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations