Technical Physics Letters

, Volume 30, Issue 9, pp 750–752 | Cite as

Optical rectification effect in nanocarbon films

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • Y. P. Svirko
Article

Abstract

When a nanocarbon film obtained by plasmachemical deposition is fixed between two parallel electrodes and exposed to the pulsed radiation of a Q-switched neodymium laser, a pulsed electric voltage appears between the electrodes, with the pulse shape repeating the laser pulse envelope. It is shown that the amplitude and polarity of the pulsed voltage strongly depend on the angle of incidence and polarization of laser beam and on the spatial orientation of a carbon film with electrodes relative to the laser beam. The observed phenomenon exhibits all features characteristic of the optical rectification effect. For the optimum spatial orientation of a film, the factor of conversion of the laser pulse power into electric voltage amounted to 500 mV/MW, which is many times greater than the values observed in the case of optical rectification in well-known dielectric nonlinear optical crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Ward, Phys. Rev. 143, 569 (1966).CrossRefADSGoogle Scholar
  2. 2.
    B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Élektron. (Moscow) 7, 5 (1980) [Sov. J. Quantum Electron. 10, 1 (1980)].Google Scholar
  3. 3.
    V. L. Margulis, E. A. Gaiduk, and E. N. Zhidkin, Opt. Commun. 183, 317 (2000).CrossRefADSGoogle Scholar
  4. 4.
    M. C. Nuss and J. Orenstein, in Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, 1998), pp. 7–50.Google Scholar
  5. 5.
    A. N. Obraztsov, A. P. Volkov, A. I. Boronin, and S. V. Koshcheev, Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
  6. 6.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
  7. 7.
    G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992) [Sov. J. Quantum Electron. 22, 37 (1992)].Google Scholar
  8. 8.
    G. M. Mikheev, T. N. Mogileva, A. Yu. Popov, and D. G. Kalyuzhnyi, Prib. Tekh. Éksp., No. 2, 101 (2003) [Instrum. Exp. Tech. 46, 233 (2003)].Google Scholar
  9. 9.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 125, 548 (2004) [JETP 98, 483 (2004)].Google Scholar
  10. 10.
    S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Usp. Fiz. Nauk 147, 675 (1985) [Sov. Phys. Usp. 28, 1084 (1985)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • G. M. Mikheev
    • 1
    • 2
    • 3
  • R. G. Zonov
    • 1
    • 2
    • 3
  • A. N. Obraztsov
    • 1
    • 2
    • 3
  • Y. P. Svirko
    • 1
    • 2
    • 3
  1. 1.Institute of Applied Mechanics, Ural DivisionRussian Academy of SciencesIzhevsk, UdmurtiaRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Faculty of PhysicsJoensuu UniversityJoensuuFinland

Personalised recommendations