Technical Physics Letters

, Volume 30, Issue 9, pp 712–714

Modeling the behavior of complex media by jointly using discrete and continuum approaches

  • S. G. Psakhie
  • A. Y. Smolin
  • Y. P. Stefanov
  • P. V. Makarov
  • M. A. Chertov
Article

Abstract

We propose a new approach to modeling the behavior of heterogeneous media, according to which such objects are represented as composed of regions of two types, one being described within the framework of a discrete, and the other, a continuum approach. This joint approach is promising for the numerical modeling of complex media with strongly different properties of components. Possibilities of the proposed method were verified by studying the propagation of elastic waves in a two-component medium with a discrete component, modeled by the method of movable cellular automata, and a continuum component described by a system of equations of motion of continuum solved by the finite difference method. The results of calculations show that this approach provides adequate description of the propagation of elastic waves in complex media and does not introduce nonphysical distortions at the boundaries where the two models are matched.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Cundall and O. D. Strack, Geotechnique 1(29), 47 (1979).Google Scholar
  2. 2.
    S. Luding, Phys. Rev. E 52, 4442 (1995).CrossRefADSGoogle Scholar
  3. 3.
    O. R. Walton, Mech. Mater. 16, 239 (1993).CrossRefADSGoogle Scholar
  4. 4.
    H. J. Herrmann and S. Luding, Continuum Mech. Thermodyn. 10, 189 (1998).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S. G. Psakhie, Y. Horie, S. Yu. Korostelev, et al., Izv. Vyssh. Uchebn. Zaved. Fiz. 38(11), 58 (1995).Google Scholar
  6. 6.
    S. G. Psakhie, G. P. Ostermeyer, A. I. Dmitriev, et al., Fiz. Mezomekh. 3(2), 5 (2000).Google Scholar
  7. 7.
    S. G. Psakhie, M. A. Chertov, and E. V. Shil’ko, Fiz. Mezomekh. 3(3), 93 (2000).Google Scholar
  8. 8.
    S. G. Psakhie, Y. Horie, G. P. Ostermeyer, et al., Theor. Appl. Fract. Mech. 37, 311 (2001).Google Scholar
  9. 9.
    S. G. Psakhie, V. V. Ruzhich, O. P. Smekalin, et al., Fiz. Mezomekh. 4(1), 67 (2001).Google Scholar
  10. 10.
    M. L. Wilkins, in Methods of Computational Physics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964; Mir, Moscow, 1967), pp. 212–263.Google Scholar
  11. 11.
    M. M. Nemirovich-Danchenko and Yu. P. Stefanov, Geol. Geofiz. 36(11), 96 (1995).Google Scholar
  12. 12.
    Yu. P. Stefanov, Fiz. Mezomekh. 1(2), 81 (1998).MathSciNetGoogle Scholar
  13. 13.
    Yu. P. Stefanov, Theor. Appl. Fract. Mech. 34, 101 (2000).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • S. G. Psakhie
    • 1
  • A. Y. Smolin
    • 1
  • Y. P. Stefanov
    • 1
  • P. V. Makarov
    • 1
  • M. A. Chertov
    • 1
  1. 1.Institute of Strength Physics and Materials Science, Siberian DivisionRussian Academy of SciencesTomskRussia

Personalised recommendations