Turbulence spectra generated by singularities

  • E. A. Kuznetsov
Nonlinear Dynamics

Abstract

The problem of turbulence spectra generated by the singularities located on lines and planes is considered. It is shown that the frequency spectrum of fluid-surface displacements due to whitecaps (linear singularities) is scaled like a weakly turbulent Zakharov-Filonenko spectrum. The corresponding wave-vector spectrum may be highly anisotropic with a decrease in maximum, as in the Phillips spectrum. However, in the isotropic situation, the spectrum differs markedly from the Phillips form. For a highly anisotropic two-dimensional turbulence, the vorticity jumps can generate the Kraichnan power-law distribution in the region of maximal angular peak. For the isotropic distribution, the turbulence spectrum coincides with the Saffman spectrum. For the shock-generated acoustic turbulence, the spectrum has the form of the Kadomtsev-Petviashvili spectrum Eω∼ ω−2 for all spatial dimensionalities.

PACS numbers

47.35.+i 47.32.Cc 47.27.−i 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Phillips, J. Fluid Mech. 4, 426 (1958); in Wind Waves (Inostrannaya Literatura, Moscow, 1962), p. 219.ADSMATHMathSciNetGoogle Scholar
  2. 2.
    R. Kraichnan, Phys. Fluids 11, 1417 (1967).MathSciNetGoogle Scholar
  3. 3.
    P. G. Saffman, Stud. Appl. Math. 50, 49 (1971).Google Scholar
  4. 4.
    B. B. Kadomtsev and V. I. Petviashvili, Dokl. Akad. Nauk SSSR 208, 794 (1973) [Sov. Phys. Dokl. 18, 115 (1973)].Google Scholar
  5. 5.
    V. E. Zakharov and N. N. Filonenko, Dokl. Akad. Nauk SSSR 170, 1292 (1967) [Sov. Phys. Dokl. 11, 881 (1967)].Google Scholar
  6. 6.
    Y. Toba, J. Oceanogr. Soc. Jpn. 29, 209 (1973).Google Scholar
  7. 7.
    M. Donelan, M. Hamilton, and W. H. Hui, Philos. Trans. R. Soc. London, Ser. A 315, 509 (1985).ADSGoogle Scholar
  8. 8.
    O. M. Phillips, J. Fluid Mech. 156, 505 (1985).ADSMATHGoogle Scholar
  9. 9.
    D. K. Lilly, J. Fluid Mech. 45, 395 (1971).ADSMATHGoogle Scholar
  10. 10.
    J. C. McWilliams, J. Fluid Mech. 146, 21 (1984).ADSMATHGoogle Scholar
  11. 11.
    S. Kida, J. Phys. Soc. Jpn. 54, 2840 (1985).ADSGoogle Scholar
  12. 12.
    M. E. Brachet, M. Meneguzzi, and P. L. Sulem, Phys. Rev. Lett. 57, 683 (1986).CrossRefADSGoogle Scholar
  13. 13.
    R. Benzi, S. Patarnello, and P. Santangelo, Europhys. Lett. 3, 811 (1986).ADSGoogle Scholar
  14. 14.
    B. Legras, B. Santangelo, and R. Benzi, Europhys. Lett. 5, 37 (1988); B. Santangelo, R. Benzi, and B. Legras, Phys. Fluids A 1, 1027 (1989).ADSGoogle Scholar
  15. 15.
    K. Okhitani, Phys. Fluids A 3, 1598 (1991).ADSGoogle Scholar
  16. 16.
    B. Legras and D. Dritschel, Appl. Sci. Res. 51, 445 (1993).CrossRefGoogle Scholar
  17. 17.
    A. H. Nielsen, X. He, J. J. Rasmussen, and T. Bohr, Phys. Fluids 8, 2263 (1996).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    E. A. Kuznetsov and V. P. Ruban, Pis’ma Zh. Éksp. Teor. Fiz. 67, 1015 (1998) [JETP Lett. 67, 1076 (1998)]; Phys. Rev. E 61, 831 (2000).Google Scholar
  19. 19.
    J. Weiss, Physica D (Amsterdam) 48, 273 (1991).ADSMATHGoogle Scholar
  20. 20.
    V. I. Arnol’d, Catastrophe Theory (Znanie, Moscow, 1981; Springer, Berlin, 1986); Mathematical Methods of Classical Mechanics, 3rd ed. (Nauka, Moscow, 1984; Springer, New York, 1989).Google Scholar
  21. 21.
    V. I. Yudovich, Chaos 10, 705 (2000).CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    D. G. Dritschel, Phys. Fluids A 5, 984 (1993); J. Fluid Mech. 293, 269 (1995).ADSMATHMathSciNetGoogle Scholar
  23. 23.
    J. M. Burgers, Lecture in California Institute of Tech. (1951) (unpublished).Google Scholar
  24. 24.
    E. A. Kuznetsov, Pis’ma Zh. Éksp. Teor. Fiz. 76, 406 (2002) [JETP Lett. 76, 346 (2002)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations