Energy absorption in time-dependent unitary random matrix ensembles: Dynamic versus anderson localization

  • M. A. Skvortsov
  • D. M. Basko
  • V. E. Kravtsov
Condensed Matter

Abstract

We consider energy absorption in an externally driven complex system of noninteracting fermions with the chaotic underlying dynamics described by the unitary random matrices. In the absence of quantum interference, the energy absorption rate W(t) can be calculated with the help of the linear-response Kubo formula. We calculate the leading two-loop interference correction to the semiclassical absorption rate for an arbitrary time dependence of the external perturbation. Based on the results for periodic perturbations, we make a conjecture that the dynamics of the periodically driven random matrices can be mapped onto the one-dimensional Anderson model. We predict that, in the regime of strong dynamic localization, W(t)∝-ln(t)/t2 rather than decaying exponentially.

PACS numbers

72.10.Bg 05.40.−a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 60, R16311 (1999); Phys. Rev. B 64, 085115 (2001); M. G. Vavilov, I. L. Aleiner, and V. Ambegaokar, Phys. Rev. B 63, 195313 (2001).Google Scholar
  2. 2.
    V. I. Yudson, E. Kanzieper, and V. E. Kravtsov, Phys. Rev. B 64, 045310 (2001).Google Scholar
  3. 3.
    M. A. Skvortsov, Phys. Rev. B 68, 041306(R) (2003).Google Scholar
  4. 4.
    D. M. Basko, M. A. Skvortsov, and V. E. Kravtsov, Phys. Rev. Lett. 90, 096801 (2003).Google Scholar
  5. 5.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, New York, 1997).Google Scholar
  6. 6.
    V. E. Kravtsov, cond-mat/0312316.Google Scholar
  7. 7.
    M. Wilkinson, J. Phys. A: Math. Gen. 21, 4021 (1988).ADSGoogle Scholar
  8. 8.
    B. D. Simons and B. L. Altshuler, Phys. Rev. B 48, 5422 (1993).ADSGoogle Scholar
  9. 9.
    G. D. Mahan, Many-Particle Physics, 3rd ed. (Kluwer Academic, Boston, 2000).Google Scholar
  10. 10.
    G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, Ed. by G. Casati and J. Ford (Springer, Berlin, 1979), Lect. Notes Phys., Vol. 93.Google Scholar
  11. 11.
    X.-B. Wang and V. E. Kravtsov, Phys. Rev. B 64, 033313 (2001).Google Scholar
  12. 12.
    A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 77, 4536 (1996).CrossRefADSGoogle Scholar
  13. 13.
    A. Altland, Phys. Rev. Lett. 71, 69 (1993); C. Tian, A. Kamenev, and A. Larkin, cond-mat/0403482; Although in these works Eq. (46) was applied to the KQR, its validity is not restricted just by the KQR case.ADSGoogle Scholar
  14. 14.
    N. F. Mott, Philos. Mag. 17, 1259 (1968).Google Scholar
  15. 15.
    V. L. Berezinskii, Zh. Éksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. JETP 38, 620 (1974)].Google Scholar
  16. 16.
    V. L. Berezinskii and L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 77, 2498 (1979) [Sov. Phys. JETP 50, 1209 (1979)].MathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • M. A. Skvortsov
    • 1
  • D. M. Basko
    • 2
  • V. E. Kravtsov
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.The Abdus Salam International Center for Theoretical PhysicsTriesteItaly

Personalised recommendations