Advertisement

The influence of kinetic processes at a negative muon track endpoint in doped nondegenerate silicon on the behavior of muon spin polarization

  • A. S. Baturin
  • V. N. Gorelkin
  • V. R. Solov’ev
Solids Electronic Properties

Abstract

This work is aimed at creating a theoretical basis for analyzing and interpreting the results of μSR experiments in doped nondegenerate semiconductors at temperatures below 50 K, when the influence of kinetic processes at the endpoint of a muon stopping track on the behavior of its polarization is substantial. The effects related to the formation of free electrons and holes in a solid-state plasma at a muon track endpoint are shown to be responsible for the mere possibility of observing negative muon spin precession at the muon frequency in doped nondegenerate semiconductors at low temperatures. The Vangsness-Bloch equations are generalized to the case of parameters varying with time. A theory based on these generalized equations allowed us to interpret more correctly the available experimental results of mSR studies of semiconductors with the use of negative muons. We showed that the μSR method could be used to obtain information about the cross sections of exchange scattering of electrons and holes by impurity centers in the region of energies inaccessible to the other measurement techniques and to estimate the cross section of capture by a solitary charged Coulomb center at virtually all charge carrier concentrations and temperatures. Under the conditions when the Debye radius is larger than the mean distance between charged particles but smaller than the Thomson radius, the capture (recombination) cross section is described by a temperature dependence qualitatively different from that predicted by current theory.

Keywords

Carrier Concentration Spin Polarization Kinetic Process Impurity Center Charge Carrier Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Gorelkin, T. N. Mamedov, and D. V. Rubtsov, Hyperfine Interact. C 1, 191 (1996).Google Scholar
  2. 2.
    V. N. Gorelkin, V. G. Grebennik, K. I. Gritsai, et al., Yad. Fiz. 56(10), 29 (1993) [Phys. At. Nucl. 56, 1316 (1993)].Google Scholar
  3. 3.
    T. N. Mamedov, V. N. Duginov, V. G. Grebennik, et al., Hyperfine Interact. 86, 717 (1994).CrossRefGoogle Scholar
  4. 4.
    T. N. Mamedov, V. N. Gorelkin, V. G. Grebennik, et al., Pis’ma Zh. Éksp. Teor. Fiz. 63, 539 (1996) [JETP Lett. 63, 566 (1996)].Google Scholar
  5. 5.
    T. N. Mamedov, I. L. Chaplygin, V. N. Duginov, et al., Hyperfine Interact. 105, 345 (1997).CrossRefGoogle Scholar
  6. 6.
    T. N. Mamedov, V. N. Duginov, D. Gerlach, et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 61 (1998) [JETP Lett. 68, 64 (1998)].Google Scholar
  7. 7.
    T. N. Mamedov, I. L. Chaplygin, V. N. Duginov, et al., J. Phys.: Condens. Matter 11, 2849 (1999).CrossRefADSGoogle Scholar
  8. 8.
    T. N. Mamedov, D. G. Andrianov, D. Gerlach, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 637 (2000) [JETP Lett. 71, 438 (2000)].Google Scholar
  9. 9.
    T. N. Mamedov, K. I. Gritsaj, A. V. Stoikov, et al., Physica B (Amsterdam) 289–290, 574 (2000).Google Scholar
  10. 10.
    T. N. Mamedov, D. G. Andrianov, D. Gerlach, et al., Zh. Éksp. Teor. Fiz. 119, 1159 (2001) [JETP 92, 1004 (2001)].Google Scholar
  11. 11.
    T. N. Mamedov, D. G. Andrianov, D. Gerlach, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 759 (2001) [JETP Lett. 73, 674 (2001)].Google Scholar
  12. 12.
    N. Korst, Teor. Mat. Fiz. 6, 265 (1971).Google Scholar
  13. 13.
    I. V. Aleksandrov, Theory of Magnetic Relaxation (Nauka, Moscow, 1975) [in Russian].Google Scholar
  14. 14.
    V. G. Nosov and I. V. Yakovleva, Zh. Éksp. Teor. Fiz. 43, 1751 (1962) [Sov. Phys. JETP 16, 1236 (1963)].Google Scholar
  15. 15.
    I. G. Ivanter and V. P. Smilga, Zh. Éksp. Teor. Fiz. 54, 559 (1968) [Sov. Phys. JETP 27, 301 (1968)].Google Scholar
  16. 16.
    I. G. Ivanter and V. P. Smilga, Zh. Éksp. Teor. Fiz. 55, 1521 (1968) [Sov. Phys. JETP 28, 796 (1969)].Google Scholar
  17. 17.
    I. G. Ivanter and V. P. Smilga, Zh. Éksp. Teor. Fiz. 60, 1985 (1971) [Sov. Phys. JETP 33, 1070 (1971)].Google Scholar
  18. 18.
    I. G. Ivanter and V. P. Smilga, Zh. Éksp. Teor. Fiz. 61, 2176 (1971) [Sov. Phys. JETP 34, 1167 (1972)].Google Scholar
  19. 19.
    V. P. Smilga and Yu. M. Belousov, The Muon Method in Science (Nauka, Moscow, 1991; Nova Sci., New York, 1994).Google Scholar
  20. 20.
    A. S. Baturin and V. N. Gorelkin, Physica B (Amsterdam) 289–290, 578 (2000).Google Scholar
  21. 21.
    V. N. Gorelkin, T. N. Mamedov, and A. S. Baturin, Physica B (Amsterdam) 289–290, 585 (2000).Google Scholar
  22. 22.
    V. A. Karasyuk, M. W. Thewald, S. An, et al., Phys. Rev. B 54, 10543 (1996).Google Scholar
  23. 23.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970; Mir, Moscow, 1973).Google Scholar
  24. 24.
    A. M. Stoneham, Theory of Defects in Solids: the Electronic Structure of Defects in Insulators and Semiconductors (Clarendon Press, Oxford, 1975; Mir, Moscow, 1978).Google Scholar
  25. 25.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed. (Clarendon Press, Oxford, 1965; Mir, Moscow, 1969).Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, New York, 1977).Google Scholar
  27. 27.
    A. G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973; Mir, Moscow, 1977).Google Scholar
  28. 28.
    T. N. Mamedov, A. V. Stoikov, and V. N. Gorelkin, Fiz. Élem. Chastits At. Yadra 33, 1005 (2002) [Phys. Part. Nucl. 33, 519 (2002)].Google Scholar
  29. 29.
    V. N. Abakumov, V. I. Perel’, and I. N. Yasievich, Fiz. Tekh. Poluprovodn. (Leningrad) 12, 3 (1978) [Sov. Phys. Semicond. 12, 1 (1978)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • A. S. Baturin
    • 1
  • V. N. Gorelkin
    • 1
  • V. R. Solov’ev
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations