Advertisement

Physics of the Solid State

, Volume 46, Issue 9, pp 1717–1721 | Cite as

Cluster ab initio modeling of local lattice instability in relaxor ferroelectrics

  • O. E. Kvyatkovskii
  • F. Karadag
  • A. Mamedov
  • G. A. Zakharov
Magnetism and Ferroelectricity

Abstract

The possibility of a zigzag-type instability occurring for oxygen atoms in B-O-B, B-O-Nb, and Nb-O-Nb linear chains is examined in disordered mixed perovskite compounds Pb(B1/3, Nb2/3)O3 (B=Mg, Zn, Cd). Local adiabatic potentials for oxygen atoms are studied using total energy calculations by the ab initio Hartree-Fock + MP2 method for many-atomic clusters with different oxygen surroundings of lead atoms. The effect of lattice relaxation along the chain on the shape of the local potential in the transverse direction for the central oxygen atom is considered.

Keywords

Oxygen Atom Perovskite Transverse Direction Energy Calculation Linear Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).Google Scholar
  2. 2.
    G. A. Smolenskii, J. Phys. Soc. Jpn. 28(Suppl.), 25 (1970).Google Scholar
  3. 3.
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).Google Scholar
  4. 4.
    Z. G. Ye, Ferroelectrics 65, 193 (1996).Google Scholar
  5. 5.
    C. A. Randall and A. S. Bhalla, Jpn. J. Appl. Phys. 29, 327 (1990).CrossRefGoogle Scholar
  6. 6.
    V. A. Isupov, Ferroelectrics 90, 113 (1989); Ferroelectrics 143, 109 (1993).Google Scholar
  7. 7.
    L. E. Cross, Ferroelectrics 76, 241 (1987).Google Scholar
  8. 8.
    B. V. Westphal, W. Kleemann, and M. D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).CrossRefADSGoogle Scholar
  9. 9.
    F. Karadag, S. Palaz, S. Güngör, A. Mamedov, and O. E. Kvyatkovskii, Ferroelectrics 283, 61 (2003).CrossRefGoogle Scholar
  10. 10.
    O. E. Kvyatkovskii, Ferroelectrics 283, 67 (2003).CrossRefGoogle Scholar
  11. 11.
    S. Vakhrushev, S. Zhukov, G. Fetisov, and V. Chernyshov, J. Phys.: Condens. Matter 6, 4021 (1994).CrossRefADSGoogle Scholar
  12. 12.
    S. B. Vakhrushev, A. A. Naberezhnov, N. M. Okuneva, and B. N. Savenko, Fiz. Tverd. Tela (St. Petersburg) 37, 3621 (1995) [Phys. Solid State 37, 1993 (1995)].Google Scholar
  13. 13.
    P. Bonneau, P. Garnier, G. Calvarin, E. Husson, J. R. Gavarri, A. W. Hewat, and A. Morell, J. Solid State Chem. 91, 350 (1991).CrossRefADSGoogle Scholar
  14. 14.
    N. de Mathan, E. Husson, G. Calvarin, J. R. Gavarri, A. W. Hewat, and A. Morrell, J. Phys.: Condens. Matter 3, 8159 (1991).CrossRefADSGoogle Scholar
  15. 15.
    H. D. Rosenfeld and T. Egami, Ferroelectrics 164, 133 (1995).Google Scholar
  16. 16.
    O. E. Kvyatkovskii and B. F. Shchegolev, Ferroelectrics 153, 207 (1994).Google Scholar
  17. 17.
    O. E. Kvyatkovskii and B. F. Shchegolev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 1060 (2002).Google Scholar
  18. 18.
    O. E. Kvyatkovskii, Fiz. Tverd. Tela (St. Petersburg) 44, 1087 (2002) [Phys. Solid State 44, 1135 (2002)].Google Scholar
  19. 19.
    K. A. Bokov and I. E. Mylnikova, Fiz. Tverd. Tela (Leningrad) 2, 2728 (1960) [Sov. Phys. Solid State 2, 2428 (1960)].Google Scholar
  20. 20.
    Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, Ed. by K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, 1981), Group III, Vol. 9a.Google Scholar
  21. 21.
  22. 22.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  23. 23.
    S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289 (1990); Chem. Phys. Lett. 212, 260 (1993).CrossRefGoogle Scholar
  24. 24.
    T. H. Dunning, J. Chem. Phys. 55, 716 (1971).Google Scholar
  25. 25.
    M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).CrossRefADSGoogle Scholar
  26. 26.
    T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977).Google Scholar
  27. 27.
    W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).Google Scholar
  28. 28.
    H. Arndt, F. Sauerbier, G. Schmidt, and L. A. Shelbanov, Ferroelectrics 79, 145 (1988).Google Scholar
  29. 29.
    L. S. Kamzina, N. N. Krainik, L. M. Sapozhnikova, and S. V. Ivanova, Sov. Phys. Solid State 33, 1169 (1991).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • O. E. Kvyatkovskii
    • 1
    • 2
  • F. Karadag
    • 1
  • A. Mamedov
    • 1
  • G. A. Zakharov
    • 3
  1. 1.Cukurova UniversityAdanaTurkey
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations