Advertisement

Semiconductors

, Volume 38, Issue 9, pp 1105–1110 | Cite as

Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region

  • D. G. Pavel’ev
  • N. V. Demarina
  • Yu. I. Koshurinov
  • A. P. Vasil’ev
  • E. S. Semenova
  • A. E. Zhukov
  • V. M. Ustinov
Physics of Semiconductor Devices

Abstract

Characteristics of ohmic InGaAs contacts in planar diodes based on semiconductor superlattices with a small-area active region (1–10 µm2) are studied. The diodes were formed on the basis of short (18 or 30 periods) heavily doped (1018 cm−3) GaAs/AlAs superlattices with a miniband width of 24.4 meV. The reduced resistance of the ohmic contact was equal to 2×10−7 Ω cm2 at room temperature. It is shown that the properties of fabricated planar diodes make it possible to use these diodes later on in semiconductor devices that operate in the terahertz frequency region in a wide temperature range (4–300 K).

Keywords

Active Region Magnetic Material Frequency Region Electromagnetism Wide Temperature Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microwave Semiconductor Devices and Their Circuit Applications, Ed. by H. A. Watson (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).Google Scholar
  2. 2.
    Spectroscopic Techniques for Far-Infrared, Submillimeter and Millimeter Waves, Ed. by D. H. Martin (North-Holland, Amsterdam, 1967; Mir, Moscow, 1970).Google Scholar
  3. 3.
    J. A. Calviello, IEEE Trans. Electron Devices 26, 1273 (1979).ADSGoogle Scholar
  4. 4.
    F. Lewen, R. Gendriesh, I. Pak, et al., Rev. Sci. Instrum. 69, 32 (1998).CrossRefADSGoogle Scholar
  5. 5.
    F. Maiwald, F. Lewen, B. Vowinkel, et al., IEEE Microwave Guid. Wave Lett. 9, 198 (1999).Google Scholar
  6. 6.
    F. Maiwald, F. Lewen, V. Ahrens, et al., J. Mol. Spectrosc. 202, 166 (2000).CrossRefADSGoogle Scholar
  7. 7.
    C.-I. Lin, A. Vogt, M. Rodriguez-Gironéz, et al., Annual Report (Technische Univ., Darmstadt, 1998), p. 33; http://www.hf.e-technik.tudarmstadt.de/forschung/jahreberichte/JB1998/index.php.Google Scholar
  8. 8.
    S. Brandl, E. Schomburg, R. Scheuerer, et al., Appl. Phys. Lett. 73, 3117 (1998).CrossRefADSGoogle Scholar
  9. 9.
    E. Schomburg, K. Hofbeck, R. Scheuerer, et al., Phys. Rev. B 65, 155320 (2002).Google Scholar
  10. 10.
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).Google Scholar
  11. 11.
    S. Winnerl, E. Schomburg, J. Grenzer, et al., Phys. Rev. B 56, 10303 (1997).CrossRefADSGoogle Scholar
  12. 12.
    N. Braslau, J. B. Gunn, and J. L. Staples, Solid-State Electron. 10, 381 (1967).CrossRefGoogle Scholar
  13. 13.
    N. Braslau, J. Vac. Sci. Technol. 19, 803 (1981).CrossRefGoogle Scholar
  14. 14.
    C. P. Lee, Electron. Lett. 12, 406 (1981).Google Scholar
  15. 15.
    K. A. Jones, E. H. Linfield, and J. E. F. Frost, Appl. Phys. Lett. 69, 4197 (1996).ADSGoogle Scholar
  16. 16.
    R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Ser. A 130, 499 (1931).ADSGoogle Scholar
  17. 17.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Physique, Les Ulis Cedex, 1988).Google Scholar
  18. 18.
    M. Shur, GaAs Devices and Circuits (Plenum, New York, 1987; Mir, Moscow, 1991).Google Scholar
  19. 19.
    C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).CrossRefADSGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon Press, Oxford, 1977).Google Scholar
  21. 21.
    W. Fawcett, D. A. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).Google Scholar
  22. 22.
    J. G. Ruch and W. Fawcett, J. Appl. Phys. 41, 3843 (1970).CrossRefGoogle Scholar
  23. 23.
    A. Wacker and A.-P. Jauho, Superlattices Microstruct. 23, 297 (1998).ADSGoogle Scholar
  24. 24.
    J. M. Woodall, J. L. Freeouf, G. D. Pettit, et al., J. Vac. Sci. Technol. 19, 626 (1981).Google Scholar
  25. 25.
    D. G. Pavel’ev, Yu. I. Koshurinov, A. P. Vasil’ev, et al., in Proceedings of Workshop on Nanophotonics (IFM RAN, Nizhni Novgorod, 2002), p. 116.Google Scholar
  26. 26.
    S. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984), Vols. 1, 2.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • D. G. Pavel’ev
    • 1
  • N. V. Demarina
    • 1
  • Yu. I. Koshurinov
    • 1
  • A. P. Vasil’ev
    • 2
  • E. S. Semenova
    • 2
  • A. E. Zhukov
    • 2
  • V. M. Ustinov
    • 2
  1. 1.Lobachevsky State UniversityNizhni NovgorodRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations