Advertisement

Astronomy Letters

, Volume 30, Issue 9, pp 647–655 | Cite as

Fission and the r-process: Competition between neutron-induced and beta-delayed fission

  • I. V. Panov
  • F. -K. Thielemann
Article

Abstract

We show that for the discussed scenario of a neutron-star merger in highly neutronized ejecta (Y e ⊃0.1), neutron-induced fission plays a major role in the r-process cycling and is the main obstacle to the formation of superheavy elements. At the final stage of the r-process, when the free-neutron density is already too low to maintain rapid nucleosynthesis and only beta-decay and beta-delayed fission take place, the leading role in forming the final abundances of chemical elements passes to delayed fission. The latter ultimately changes the abundances of individual isotopes in the region before the second peak and heavier than lead, which, in particular, affects the determination of the age of the Galaxy.

Key words

nuclear astrophysics, nucleosynthesis, r-process supernovae and supernova remnants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Anders and N. Grevesse, Cosmochimica Acta 53, 197 (1989).ADSGoogle Scholar
  2. 2.
    S. I. Blinnikov and I. V. Panov, Pis'ma Astron. Zh. 22, 39 (1996) [Astron. Lett. 22, 39 (1996)].Google Scholar
  3. 3.
    A. G. W. Cameron, Astrophys. J. 562, 456 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. J. Cowan, B. Pfeiffer, K.-L. Kratz, et al., Astrophys. J. 521, 194 (1999).CrossRefADSGoogle Scholar
  5. 5.
    J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Annu. Rev. Astron. Astrophys. 29, 447 (1991).CrossRefADSGoogle Scholar
  6. 6.
    C. Freiburghaus, J.-F. Rembges, T. Rauscher, et al., Astrophys. J. 516, 381 (1999a).CrossRefADSGoogle Scholar
  7. 7.
    C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. Lett. 525, L121 (1999b).CrossRefADSGoogle Scholar
  8. 8.
    S. Goriely and B. Clerbaux, Astron. Astrophys. 346, 798 (1999).ADSGoogle Scholar
  9. 9.
    E. R. Hilf, H. V. Groote, and K. Takahashi, in Proceedings of the 3rd International Conference on Nuclei far from Stability (CERN-76-13, 1976), p. 142.Google Scholar
  10. 10.
    W. M. Howard and P. Möller, At. Data Nucl. Data Tables 25, 219 (1980).CrossRefADSGoogle Scholar
  11. 11.
    M. G. Itkis, V. N. Okolovich, and G. N. Smirenkin, Nucl. Phys. A 502, 243 (1989).ADSGoogle Scholar
  12. 12.
    J. Janacke and B. P. Eynon, At. Data Nucl. Data Tables 17, 467 (1976).ADSGoogle Scholar
  13. 13.
    K.-L. Kratz, J.-P. Bitouzet, F.-K. Thielemann, et al., Astrophys. J. 403, 216 (1993).CrossRefADSGoogle Scholar
  14. 14.
    K. Langanke and E. Kolbe, At. Data Nucl. Data Tables 82, 191 (2002).CrossRefADSGoogle Scholar
  15. 15.
    K. Langanke and G. Martinec-Pinedo, Rev. Mod. Phys. 75, 819 (2003).CrossRefADSGoogle Scholar
  16. 16.
    Yu. S. Lyutostanskii, S. V. Malevannyi, I. V. Panov, and V. M. Chechetkin, Yad. Fiz. 47, 780 (1988) [Sov. J. Nucl. Phys. 47, 780 (1988)].Google Scholar
  17. 17.
    A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 644, 389 (1998).ADSGoogle Scholar
  18. 18.
    P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).ADSGoogle Scholar
  19. 19.
    W. D. Myers and W. J. Swiatecki, Phys. Rev. C 60, 014606 (1999).ADSGoogle Scholar
  20. 20.
    D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).ADSGoogle Scholar
  21. 21.
    I. V. Panov, S. I. Blinnikov, and F.-K. Thielemann, Pis'ma Astron. Zh. 27, 248 (2001a) [Astron. Lett. 27, 239 (2001)].Google Scholar
  22. 22.
    I. V. Panov and V. M. Chechetkin, Pis'ma Astron. Zh. 28, 476 (2002) [Astron. Lett. 28, 476 (2002)].Google Scholar
  23. 23.
    I. V. Panov, C. Freiburghaus, and F.-K. Thielemann, Nucl. Phys. A 688, 587 (2001b).ADSGoogle Scholar
  24. 24.
    I. V. Panov, C. Freiburghaus, and F.-K. Thielemann, in Proceedings of Workshop on Nuclear Astrophysics, Ed. by W. Hillebrandt and E. Müller (Ringberg, Garching, MPA, 2000), p. 73.Google Scholar
  25. 25.
    I. V. Panov and D. K. Nadyozhin, Pis'ma Astron. Zh. 25, 369 (1999) [Astron. Lett. 25, 369 (1999)].Google Scholar
  26. 26.
    I. V. Panov and F.-K. Thielemann, Pis'ma Astron. Zh. 29, 508 (2003a) [Astron. Lett. 29, 510 (2003)].Google Scholar
  27. 27.
    I. V. Panov and F.-K. Thielemann, Nucl. Phys. A 718, 647 (2003b).ADSGoogle Scholar
  28. 28.
    Y.-Z. Qian, Astrophys. J. Lett. 569, L103 (2002).ADSGoogle Scholar
  29. 29.
    T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).CrossRefADSGoogle Scholar
  30. 30.
    S. Rosswog, M. Liebendörfer, F.-K. Thielemann, et al., Astron. Astrophys. 341, 499 (1999).ADSGoogle Scholar
  31. 31.
    P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J., Suppl. Ser. 97, 121 (1965).ADSGoogle Scholar
  32. 32.
    C. Sneden, J. J. Cowan, I. I. Ivans, et al., Astrophys. J. 533, L139 (2000).CrossRefADSGoogle Scholar
  33. 33.
    A. Staudt and H. V. Klapdor-Kleingrothaus, Nucl. Phys. A 549, 254 (1992).ADSGoogle Scholar
  34. 34.
    F.-K. Thielemann, M. Arnould, and W. Truran, Advan. Nucl. Astrophys., Ed. by E. Vangioni-Flam et al. (Frontiers, Gif sur Yvette, 1987), p. 525.Google Scholar
  35. 35.
    F.-K. Thielemann, A. G. W. Cameron, and J. J. Cowan, in Proceedings of International Conference: 50 Years with Nuclear Fission, Ed. by J. Behrens and A. D. Carlson (Am. Nucl. Soc., La Grange Park, 1989), p. 592.Google Scholar
  36. 36.
    F.-K. Thielemann, J. Metzinger, and H. V. Klapdor-Kleingrothaus, Z. Phys. A 309, 301 (1983).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • I. V. Panov
    • 1
  • F. -K. Thielemann
    • 2
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.University of BaselBaselSwitzerland

Personalised recommendations