Crystallography Reports

, Volume 49, Issue 4, pp 614–618 | Cite as

Synthesis and investigation of the new phosphates K2LnZr(PO4)3 (Ln = Ce-Yb, Y) with langbeinite Structure

  • I. G. Trubach
  • A. I. Beskrovnyi
  • A. I. Orlova
  • V. A. Orlova
  • V. S. Kurazhkovskaya
Structure of Inorganic Compounds

Abstract

New orthophosphates of potassium, zirconium, and rare earth elements K2LnZr(PO4)3 (Ln = Ce-Yb, Y) that crystallize in a langbeinite structure (cubic system, sp. gr. P213, Z = 4) were prepared and investigated by X-ray diffraction and IR spectroscopy. The structure of the K2PrZr(PO4)3 phosphate was refined by the Rietveld method using neutron powder diffraction data (DN-2 time-of-flight diffractometer, Joint Institute for Nuclear Research, Dubna). This structure is characterized by a mixed framework [PrZr(PO4)3] with large cavities in which potassium cations are located. Pr3+ and Zr4+ cations are distributed in order over two independent crystallographic positions. The limits of the incorporation of lanthanide cations into the anionic framework in phosphates with sodium-zirconium phosphate and langbeinite structures are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Voronov, V. V. Ilyukhin, and N. V. Belov, Kristallografiya 20(3), 556 (1975) [Sov. Phys. Crystallogr. 20, 340 (1975)].Google Scholar
  2. 2.
    H. Wulff, U. Guth, and B. Loescher, Powder Diffr. 7, 103 (1992).Google Scholar
  3. 3.
    E. R. Losilla, S. Bruque, M. A. G. Aranda, et al., Solid State Ionics 112, 53 (1998).CrossRefGoogle Scholar
  4. 4.
    R. Masse, A. Durif, J. C. Guitel, and I. Tordjman, Bull. Soc. Fr. Mineral. Crystallogr. 95, 47 (1972).Google Scholar
  5. 5.
    A. Leclaire, A. Benmoussa, M. M. Borel, et al., J. Solid State Chem. 78, 227 (1989).ADSGoogle Scholar
  6. 6.
    E. S. Lunezheva, B. A. Maksimov, O. K. Mel’nikov, and L. A. Muradyan, Kristallografiya 34(3), 611 (1989) [Sov. Phys. Crystallogr. 34, 363 (1989)].Google Scholar
  7. 7.
    J. Isasi and A. Daidouh, Solid State Ionics 133, 303 (2000).CrossRefGoogle Scholar
  8. 8.
    P. D. Battle, A. K. Cheetham, W. T. A. Harrison, and G. J. Long, J. Solid State Chem. 62, 16 (1986).CrossRefADSGoogle Scholar
  9. 9.
    P. D. Battle, T. C. Gibb, S. Nixon, and W. T. A. Harrison, J. Solid State Chem. 75, 21 (1988).CrossRefADSGoogle Scholar
  10. 10.
    Y. Miyajima, T. Miyoshi, J. Tamaki, et al., Solid State Ionics 124, 201 (1999).CrossRefGoogle Scholar
  11. 11.
    V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • I. G. Trubach
    • 1
  • A. I. Beskrovnyi
    • 2
  • A. I. Orlova
    • 1
  • V. A. Orlova
    • 1
  • V. S. Kurazhkovskaya
    • 3
  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations