Semiconductors

, Volume 38, Issue 7, pp 812–817

Nonlinear properties of phototropic media on the basis of CuxSe nanoparticles in quartz glass

  • S. A. Zolotovskaya
  • N. N. Posnov
  • P. V. Prokosin
  • K. V. Yumashev
  • V. S. Gurin
  • A. A. Alexeenko
Low-Dimensional Systems

Abstract

Energy and kinetic characteristics of theinduced transparency in quartz sol-gel glasses containing copper selenide nanoparticles of different stoichiometry are studied. The dependence of the nonlinear optical properties of the glass samples on the chemical composition of copper selenide particles, which gives rise to an additional absorption band in the near-infrared region and determines its spectral position, is established. It is found that the time of relaxation of the induced transparency increases and the peak absorption cross section decreases as the absorption maximum shifts to the low-energy spectral region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).Google Scholar
  2. 2.
    A. D. Yoffe, Adv. Phys. 42, 173 (1993); Adv. Phys. 50, 1 (2001).CrossRefADSGoogle Scholar
  3. 3.
    Nanomaterials: Synthesis, Properties and Applications, Ed. by A. S. Edelstein and R. C. Cammarata (Inst. of Physics, Bristol, 1996).Google Scholar
  4. 4.
    C. N. R. Rao, J. Mater. Chem. 9(1), 1 (1999).CrossRefMATHGoogle Scholar
  5. 5.
    U. Woggon, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1998).Google Scholar
  6. 6.
    G. T. Perovskii, A. A. Zhilin, V. S. Shashkin, and A. A. Onushchenko, Opt. Zh. 65(12), 29 (1998) [J. Opt. Tech. 65, 974 (1998)].Google Scholar
  7. 7.
    V. V. Gorbachev, I–IV Semiconductor Compounds (Metallurgiya, Moscow, 1980).Google Scholar
  8. 8.
    A. A. Babitsyna, T. A. Emel’yanova, M. A. Chernitsyna, and V. T. Kalinnikov, Zh. Neorg. Khim. 20, 3093 (1975).Google Scholar
  9. 9.
    R. M. Murray and R. D. Heyding, Can. J. Chem. 53, 878 (1975); Can. J. Chem. 54, 841 (1976).Google Scholar
  10. 10.
    R. D. Heyding, Can. J. Chem. 44, 1233 (1966).Google Scholar
  11. 11.
    Z. Vucic, O. Milat, V. Horvatic, and Z. Ogorelec, Phys. Rev. B 24, 5398 (1981).ADSGoogle Scholar
  12. 12.
    Z. Ogorelec and B. Celustka, J. Phys. Chem. Solids 30, 149 (1969).Google Scholar
  13. 13.
    K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983; Mir, Moscow, 1986).Google Scholar
  14. 14.
    H. Ueda, M. Nohara, K. Kitazawa, et al., Phys. Rev. B 65, 155104 (2002).Google Scholar
  15. 15.
    Y. Cheng, T. J. Emge, and J. G. Brennan, Inorg. Chem. 35, 7339 (1996).Google Scholar
  16. 16.
    V. V. Gorbachev, Neorg. Mater. 28, 2310 (1992).Google Scholar
  17. 17.
    G. P. Sorokin, Yu. M. Papshev, and P. T. Oush, Fiz. Tverd. Tela (Leningrad) 7, 2244 (1965) [Sov. Phys. Solid State 7, 1810 (1965)].Google Scholar
  18. 18.
    G. B. Abdullaev, A. N. Aliyarova, and G. A. Asadov, Phys. Status Solidi 21, 461 (1967).Google Scholar
  19. 19.
    K. C. Sharma, R. P. Sharma, and J. C. Garg, Indian J. Pure Appl. Phys. 28, 590 (1990).Google Scholar
  20. 20.
    B. Vengalis, L. Valatska, N. Shiktorov, and A. Yukna, Lit. Fiz. Sb. 27, 561 (1987).Google Scholar
  21. 21.
    Sh. Xu, H. Wang, J.-J. Zhu, and H.-Y. Chen, J. Cryst. Growth 234, 263 (2002).Google Scholar
  22. 22.
    W. Wang, Y. Geng, P. Yan, et al., J. Am. Chem. Soc. 121, 4062 (1999).Google Scholar
  23. 23.
    J. Zhy, O. Oalchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, 7344 (2000).Google Scholar
  24. 24.
    K. V. Yumashev, A. M. Malyarevich, P. V. Prokoshin, et al., Appl. Phys. B 65, 545 (1997).CrossRefADSGoogle Scholar
  25. 25.
    K. V. Yumashev, N. N. Posnov, I. A. Denisov, et al., J. Opt. Soc. Am. B 17, 572 (2000).ADSGoogle Scholar
  26. 26.
    K. V. Yumashev, V. S. Gurin, P. V. Prokoshin, et al., Phys. Status Solidi B 224, 815 (2001).ADSGoogle Scholar
  27. 27.
    V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, et al., Int. J. Inorg. Mater. 3, 493 (2001).CrossRefGoogle Scholar
  28. 28.
    V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, et al., Mater. Sci. Eng. C 15, 93 (2001).CrossRefGoogle Scholar
  29. 29.
    V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, and A. V. Frantskevich, J. Mater. Chem. 11, 149 (2001).CrossRefGoogle Scholar
  30. 30.
    K. V. Yumashev, I. A. Denisov, N. N. Posnov, et al., Appl. Phys. B 70, 179 (2000).CrossRefADSGoogle Scholar
  31. 31.
    V. V. Sobolev and V. V. Nemoshkalenko, Methods of Computational Physics in the Theory of Solids. Electronic Structure of Semiconductors (Naukova Dumka, Kiev, 1988).Google Scholar
  32. 32.
    W. Rudolph and H. Weber, Opt. Commun. 34, 491 (1980).CrossRefADSGoogle Scholar
  33. 33.
    G. Tamulaitis, V. Gulbinas, G. Kodis, et al., J. Appl. Phys. 88, 178 (2000).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • S. A. Zolotovskaya
    • 1
  • N. N. Posnov
    • 1
  • P. V. Prokosin
    • 1
  • K. V. Yumashev
    • 1
  • V. S. Gurin
    • 2
  • A. A. Alexeenko
    • 3
  1. 1.International Laser CenterMinskBelarus
  2. 2.Institute of Physicochemical ProblemsBelarussian State UniversityMinskBelarus
  3. 3.Gomel State UniversityGomelBelarus

Personalised recommendations