Advertisement

Semiconductors

, Volume 38, Issue 7, pp 807–811 | Cite as

Radiation resistance of transistor-and diode-type SiC detectors irradiated with 8-MeV protons

  • N. B. Strokan
  • A. M. Ivanov
  • N. S. Savkina
  • A. A. Lebedev
  • V. V. Kozlovskii
  • M. Syvajarvi
  • R. Yakimova
Semiconductor Structures, Interfaces, and Surfaces

Abstract

Nuclear-particle detectors based on SiC with a structure composed of an n+-type substrate, a p-type epitaxial layer, and a Schottky barrier are studied. Structures with a ∼10-µm-thick 6H-SiC layer exhibit transistor properties, whereas those with a ∼30-µm-thick 4H-SiC layer exhibit diode properties. It is established that a more than tenfold amplification of the signal is observed in the transistor-type structure. The amplification is retained after irradiation with 8-MeV protons with a dose of at least 5×1013 cm−2; in this case, the resolution is ≤10%. Amplification of the signal was not observed in the structures of diode type. However, there were diode-type detectors with a resolution of ≈3%, which is acceptable for a number of applications, even after irradiation with the highest dose of 2×1014 cm−2.

Keywords

Radiation Magnetic Material Electromagnetism Epitaxial Layer Schottky Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Kalinina, G. F. Kholuyanov, D. V. Davydov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 1260 (2003) [Semiconductors 37, 1229 (2003)].Google Scholar
  2. 2.
    A. A. Lebedev, N. B. Strokan, A. M. Ivanov, et al., Appl. Phys. Lett. 79, 4447 (2001).CrossRefADSGoogle Scholar
  3. 3.
    A. M. Ivanov, N. B. Strokan, D. V. Davydov, et al., Appl. Surf. Sci. 184, 431 (2001).CrossRefGoogle Scholar
  4. 4.
    Ion Implantation: Science and Technology, Ed. by J. F. Ziegler (Academic, Orlando, 1984).Google Scholar
  5. 5.
    W. Jiang, S. Thevuthasan, W. J. Weber, and R. Grotzschel, Nucl. Instrum. Methods Phys. Res. B 161–163, 501 (2000).Google Scholar
  6. 6.
    S. Lazanu, I. Lazanu, E. Borchi, and M. Bruzzi, Nucl. Instrum. Methods Phys. Res. A 485, 768 (2002).CrossRefADSGoogle Scholar
  7. 7.
    A. M. Ivanov, E. V. Kalinina, A. O. Konstantinov, et al., Pis’ma Zh. Tekh. Fiz. 30(14), 1 (2004).Google Scholar
  8. 8.
    S. M. Ryvkin, L. L. Makovski, N. B. Strokan, et al., IEEE Trans. Nucl. Sci. 15(3), 226 (1968).Google Scholar
  9. 9.
    V. K. Eremin, N. B. Strokan, and N. I. Tisnek, Fiz. Tekh. Poluprovodn. (Leningrad) 8, 1157 (1974) [Sov. Phys. Semicond. 8, 751 (1974)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • N. B. Strokan
    • 1
  • A. M. Ivanov
    • 1
  • N. S. Savkina
    • 1
  • A. A. Lebedev
    • 1
  • V. V. Kozlovskii
    • 2
  • M. Syvajarvi
    • 3
  • R. Yakimova
    • 3
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Polytechnical UniversitySt. PetersburgRussia
  3. 3.Linköping UniversityLinköpingSweden

Personalised recommendations