Condensate formation and vortex generation in Bose gas upon cooling

  • E. A. Brener
  • S. V. Iordanskii
  • R. B. Saptsov
Condensed Matter


The mechanism of transition of a Bose gas to the superfluid state via thermal fluctuations under the condition of external cooling at a temperature above the transition point is considered. The probability of formation of such critical fluctuations (instantons) is calculated; it is found that this probability increases as the system approaches the transition temperature. It is shown that the evolution of an individual instanton is impossible without the formation of vortices in its superfluid part.

PACS numbers

03.75.Nt 67.40.Vs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Becker and W. Doering, Ann. Phys. (Leipzig) 24, 719 (1935).Google Scholar
  2. 2.
    Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 112, 525 (1942).Google Scholar
  3. 3.
    J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1962).Google Scholar
  4. 4.
    I. M. Lifshits, Zh. Éksp. Teor. Fiz. 42, 1354 (1962) [Sov. Phys. JETP 15, 939 (1962)].Google Scholar
  5. 5.
    Ya. B. Zel’dovich, I. Yu. Kobzarev, and L. B. Okun’, Zh. Éksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1975)].ADSGoogle Scholar
  6. 6.
    T. W. Kibble, J. Phys. A 9, 1387 (1976).CrossRefADSzbMATHGoogle Scholar
  7. 7.
    W. H. Zurek, Phys. Rep. 276, 177 (1996).CrossRefADSGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physic, Vol. 5: Statistical Physics, 5th ed. (Fizmatlit, Moscow, 2002; Pergamon Press, Oxford, 1980).Google Scholar
  9. 9.
    E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 9: Statistical Physics, 2nd ed. (Fizmatlit, Moscow, 2002; Pergamon, New York, 1980), Part 2, Chap. 9.Google Scholar
  10. 10.
    V. I. Klyatskin, Stochastic Equations by the Eyes of a Physicist (Fizmatlit, Moscow, 2001).Google Scholar
  11. 11.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon Press, Oxford, 1981).Google Scholar
  12. 12.
    I. M. Khalatnikov, The Theory of Superfluidity (Nauka, Moscow, 1971), Chap. 9.Google Scholar
  13. 13.
    Akira Onuki, J. Low Temp. Phys. 50, 433 (1983).CrossRefGoogle Scholar
  14. 14.
    P. B. Weichman and J. Miller, J. Low Temp. Phys. 119, 155 (2000).CrossRefGoogle Scholar
  15. 15.
    Feng Chuan Lui and Guenter Ahlers, Phys. Rev. Lett. 76, 1300 (1996).ADSGoogle Scholar
  16. 16.
    H. Baddar, G. Ahlers, K. Kuehn, and H. Fu, J. Low Temp. Phys. 119, 1 (2000).CrossRefGoogle Scholar
  17. 17.
    I. S. Aranson, N. B. Kopnin, and V. M. Vinokur, Phys. Rev. Lett. 83, 2600 (1999).CrossRefADSGoogle Scholar
  18. 18.
    V. H. M. Ruutu, V. B. Eltsov, A. J. Gill, et al., Nature 382, 334 (1996).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • E. A. Brener
    • 1
  • S. V. Iordanskii
    • 2
  • R. B. Saptsov
    • 2
  1. 1.Institut für FestkörperforschungForschungzentrum JülichJülichGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations