Journal of Experimental and Theoretical Physics

, Volume 98, Issue 5, pp 1006–1014

A multisublattice magnetic phase induced by external field in a singlet magnet

  • V. M. Kalita
  • V. M. Loktev
Solids Structure

Abstract

The theory of magnetization in a longitudinal magnetic field is developed for an easy-plane multisublattice antiferromagnet with a singlet ground state and a strong single-ion anisotropy exceeding the magnitude of exchange interaction. The magnetic-field-induced phase transition from the singlet (magnetically dis-ordered) state to a multisublattice antiferromagnetic state represents a displacive magnetic phase transition. At T=0, this transition proceeds continuously and belongs to second-order phase transitions, while at T ≠0, the behavior changes to jumplike and the process becomes the first-order phase transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Gekht, Usp. Fiz. Nauk 159, 261 (1989) [Sov. Phys. Usp. 32, 871 (1989)].Google Scholar
  2. 2.
    M. F. Collins and O. A. Petrenko, Can. J. Phys. 75, 605 (1997).CrossRefADSGoogle Scholar
  3. 3.
    B. S. Dumesh, Usp. Fiz. Nauk 170, 403 (2000) [Phys. Usp. 43, 365 (2000)].Google Scholar
  4. 4.
    V. M. Loktev and V. S. Ostrovskii, Fiz. Nizk. Temp. 20, 983 (1994) [Low Temp. Phys. 20, 775 (1994)].Google Scholar
  5. 5.
    Y. Tanaka, H. Tanaka, and T. Ono, cond-mat/0104287.Google Scholar
  6. 6.
    B. Dorner, D. Visser, U. Stiegenberger, et al., Z. Phys. B 72, 487 (1988).CrossRefGoogle Scholar
  7. 7.
    A. Harrison and D. Visser, J. Phys.: Condens. Matter 4, 6977 (1992).ADSGoogle Scholar
  8. 8.
    V. M. Kalita, I. M. Ivanova, and V. M. Loktev, Fiz. Nizk. Temp. 28, 667 (2002) [Low Temp. Phys. 28, 475 (2002)].Google Scholar
  9. 9.
    V. M. Kalita and V. M. Loktev, Fiz. Nizk. Temp. 28, 1244 (2002) [Low Temp. Phys. 28, 883 (2002)].Google Scholar
  10. 10.
    V. M. Kalita and V. M. Loktev, Fiz. Tverd. Tela (St. Petersburg) 45, 1450 (2003) [Phys. Solid State 45, 1523 (2003)].Google Scholar
  11. 11.
    H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992).Google Scholar
  12. 12.
    H. Kawamura, J. Phys.: Condens. Matter 10, 4707 (1998).CrossRefADSGoogle Scholar
  13. 13.
    H. Kadowaki, S. M. Shapiro, T. Inami, and Y. Ajiro, J. Phys. Soc. Jpn. 57, 2640 (1988).Google Scholar
  14. 14.
    Y. Ajiro, T. Nakashima, Y. Uno, et al., J. Phys. Soc. Jpn. 57, 2648 (1988).CrossRefGoogle Scholar
  15. 15.
    V. M. Loktev, Fiz. Nizk. Temp. 5, 295 (1979) [Low Temp. Phys. 5, 142 (1979)].Google Scholar
  16. 16.
    A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare-Earth Ions in Magnetic-Ordered Crystals (Nauka, Moscow, 1985).Google Scholar
  17. 17.
    F. P. Onufrieva, Zh. Éksp. Teor. Fiz. 89, 2270 (1985) [Sov. Phys. JETP 62, 1311 (1985)].Google Scholar
  18. 18.
    Yu. N. Mitsai, A. N. Maiorova, and Yu. A. Fridman, Fiz. Tverd. Tela (St. Petersburg) 34, 66 (1992) [Sov. Phys. Solid State 34, 34 (1992)].Google Scholar
  19. 19.
    V. V. Val’kov and S. G. Ovchinnikov, Quasi-Particles in Strongly Correlated Systems (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001).Google Scholar
  20. 20.
    K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Reorientational Transitions in Rare-Earth Magnets (Nauka, Moscow, 1979).Google Scholar
  21. 21.
    T. Haseda, N. Wada, M. Hata, and K. Amaya, Physica B (Amsterdam) 108, 841 (1991).Google Scholar
  22. 22.
    V. G. Bar’yakhtar, A. N. Bogdanov, and D. A. Yablonskii, Usp. Fiz. Nauk 156, 47 (1988) [Sov. Phys. Usp. 31, 810 (1988)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • V. M. Kalita
    • 1
  • V. M. Loktev
    • 2
  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations