Semiconductors

, Volume 38, Issue 5, pp 565–571 | Cite as

Luminescence of stepped quantum wells in GaAs/GaAlAs and InGaAs/GaAs/GaAlAs structures

  • V. F. Agekyan
  • Yu. A. Stepanov
  • I. Akai
  • T. Karasava
  • L. E. Vorob’ev
  • D. A. Firsov
  • A. E. Zhukov
  • V. M. Ustinov
  • A. Zeilmeyer
  • S. Shmidt
  • S. Hanna
  • E. Zibik
Low-Dimensional Systems

Abstract

Luminescence spectra of doped and undoped GaAs/GaAlAs and InGaAs/GaAs/GaAlAs structures containing several tens of stepped quantum wells (QW) are investigated. The emission bands related to free and bound excitons and impurity states are observed in QW spectra. The luminescence excitation spectra indicate that the relaxation of free excitons to the e1hh1 state proceeds via the exciton mechanism, whereas an independent relaxation of electrons and holes is specific to bound excitons and impurity states. The energy levels for electrons and holes in stepped QWs, calculated in terms of Kane’s model, are compared with the data obtained from the luminescence excitation spectra. The analysis of the relative intensities of emission bands related to e1hh1 excitons and exciton states of higher energy shows that, as the optical excitation intensity increases, the e1hh1 transition is more readily saturated at higher temperature, because the lifetime of excitons increases. Under stronger excitation, the emission band of electron-hole plasma arises and increases in intensity superlinearly. At an excitation level of ∼105 W/cm2, excitons are screened and the plasma emission band dominates in the QW emission. Nonequilibrium luminescence spectra obtained in a picosecond excitation and recording mode show that the e1hh1 and e2hh2 radiative transitions are 100% polarized in the plane of QWs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Q. Hou, W. Staguhn, S. Takeyama, et al., Phys. Rev. B 43, 4152 (1991).CrossRefADSGoogle Scholar
  2. 2.
    R. Cingolani, R. Rinaldi, H. Lipsanen, et al., Phys. Status Solidi A 178, 263 (2000).ADSGoogle Scholar
  3. 3.
    S. Martini, A. A. Quivy, A. Tabata, and J. R. Leite, J. Appl. Phys. 90, 2280 (2001).CrossRefADSGoogle Scholar
  4. 4.
    G. Bacquet, F. Hassen, N. Lauret, et al., Superlattices Microstruct. 14, 117 (1993).ADSGoogle Scholar
  5. 5.
    J. Martinez-Pastor et al., Superlattices Microstruct. 14, 39 (1993).ADSGoogle Scholar
  6. 6.
    C. Lopez, R. Mayoral, F. Meseguer, et al., J. Appl. Phys. 81, 3281 (1997).ADSGoogle Scholar
  7. 7.
    Q. Zhou, M. O. Manasreh, B. D. Weaver, and M. Missous, Appl. Phys. Lett. 81, 3374 (2002).ADSGoogle Scholar
  8. 8.
    H. Weman, L. Sirigu, K. F. Karisson, et al., Appl. Phys. Lett. 81, 2839 (2002).CrossRefGoogle Scholar
  9. 9.
    C. Constantin, E. Martinet, M.-A. Dupertius, et al., Phys. Rev. B 61, 4488 (2000).ADSGoogle Scholar
  10. 10.
    V. Ya. Aleshkin, D. M. Gaponova, D. G. Revin, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 67(2), 196 (2003).Google Scholar
  11. 11.
    U. Jahn and H. T. Grahn, Phys. Status Solidi B 234, 443 (2002).ADSGoogle Scholar
  12. 12.
    G. R. Hayes and B. Deveaux, Phys. Status Solidi A 190, 637 (2002).Google Scholar
  13. 13.
    Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).CrossRefGoogle Scholar
  14. 14.
    J. Feldman, G. Peter, E. O. Gobel, et al., Phys. Rev. Lett. 59, 2337 (1987).CrossRefADSGoogle Scholar
  15. 15.
    L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991).Google Scholar
  16. 16.
    H. Jeong, I.-J. Lee, J.-C. Seo, et al., Solid State Commun. 85, 111 (1993).CrossRefGoogle Scholar
  17. 17.
    B. L. Liu, B. Liu, Z. Y. Xu, and W. K. Ge, J. Appl. Phys. 90, 5111 (2001).ADSGoogle Scholar
  18. 18.
    Quantum Well Lasers, Ed. by P. S. Zory, Jr. (Academic, Boston, 1993).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • V. F. Agekyan
    • 1
  • Yu. A. Stepanov
    • 1
  • I. Akai
    • 2
  • T. Karasava
    • 2
  • L. E. Vorob’ev
    • 3
  • D. A. Firsov
    • 3
  • A. E. Zhukov
    • 4
  • V. M. Ustinov
    • 4
  • A. Zeilmeyer
    • 5
  • S. Shmidt
    • 5
  • S. Hanna
    • 5
  • E. Zibik
    • 5
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Osaka City UniversityOsakaJapan
  3. 3.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  4. 4.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Institute of PhysicsUniversity of BayreuthBayreuthGermany

Personalised recommendations