Advertisement

Optics and Spectroscopy

, Volume 96, Issue 5, pp 697–702 | Cite as

Conservation of quantum correlations of squeezed light in the process of nonlinear interactions

  • V. N. Gorbachev
  • A. I. Trubilko
Third David Klyshko Memorial Seminar
  • 11 Downloads

Abstract

Optical processes in which the quantum correlations of squeezed light in an entangled state of the type of an Einstein-Podolsky-Rosen pair or a Greenberger-Horne-Zeilinger triplet will be conserved in consequence of the presence of integrals of motion are considered. For the cases of parametric three-photon interaction in a transparent nonlinear medium and of resonant interaction with an atomic ensemble, it was found that, along with the conservation of the entangled state, the amplification of the light power arises.

Keywords

Entangle State Quantum Channel Quantum Correlation Shot Noise Resonant Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    D. M. Greenberger, M. A. Horne, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Furusawa, J. L. Sorensen, S. L. Braunstein, et al., Science 282, 706 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59, 169 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    A. De Sen, U. Sen, and M. Zukowski, quant-ph/0305044.Google Scholar
  7. 7.
    A. Carlini and M. Sasaki, quant-ph/0304011.Google Scholar
  8. 8.
    V. N. Gorbachev and A. I. Trubilko, Opt. Spektrosk. 84, 970 (1998) [Opt. Spectrosc. 84, 879 (1998)].Google Scholar
  9. 9.
    V. N. Gorbachev and A. I. Trubilko, Pis’ma Zh. Éksp. Teor. Fiz. 77, 563 (2003) [JETP Lett. 77, 469 (2003)].Google Scholar
  10. 10.
    A. M. Basharov, Zh. Éksp. Teor. Fiz. 121, 1249 (2002) [JETP 94, 1070 (2002)].Google Scholar
  11. 11.
    D. Wilson, Jinbyong Lee, and M. S. Kim, quantph/ 0206197.Google Scholar
  12. 12.
    C. M. Caves, Phys. Rev. D 26, 1817 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. Kolobov and I. V. Sokolov, Opt. Spektrosk. 63, 958 (1987) [Opt. Spectrosc. 63, 562 (1987)].Google Scholar
  14. 14.
    V. N. Gorbachev and A. I. Trubilko, Zh. Éksp. Teor. Fiz. 102, 1441 (1992) [Sov. Phys. JETP 75, 781 (1992)].Google Scholar
  15. 15.
    V. N. Gorbachev and A. I. Trubilko, Zh. Éksp. Teor. Fiz. 103, 1931 (1993) [JETP 76, 956 (1993)].ADSGoogle Scholar
  16. 16.
    A. A. Kalachev and V. V. Samartsev, Kvantovaya Élektron. (Moscow) 32, 707 (2002).CrossRefGoogle Scholar
  17. 17.
    V. N. Gorbachev and A. I. Zhiliba, J. Phys. A 33, 371 (2000).CrossRefMathSciNetGoogle Scholar
  18. 18.
    S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482 (2002).CrossRefGoogle Scholar
  20. 20.
    A. S. Chirkin, V. V. Volkov, G. D. Laptev, and E. Yu. Morozov, Kvantovaya Élektron. (Moscow) 30, 847 (2000).CrossRefGoogle Scholar
  21. 21.
    A. V. Nikandrov and A. S. Chirkin, Pis’ma Zh. Éksp. Teor. Fiz. 76, 333 (2002) [JETP Lett. 76, 275 (2002)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • V. N. Gorbachev
    • 1
  • A. I. Trubilko
    • 1
  1. 1.Northwest Institute of PrintingSt. Petersburg State University of Technology and DesignSt. PetersburgRussia

Personalised recommendations